
CS 649 Big Data: Tools and Methods
Spring Semester, 2022
Doc 30 End Remarks

May 3, 2022
Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

http://www.opencontent.org/opl.shtml

End Remarks

2

https://xkcd.com/2295/

http://highscalability.com

3

how to scale software - primarily web sites & backends

Hacker News

4

https://news.ycombinator.com

Martin Fowler Bliki

5

A website on building software effectively

https://martinfowler.com

Author

Works at ThoughtWorks

Software Architecture Guide

6

https://martinfowler.com/architecture/

What is architecture? Why does architecture matter?

Application Architecture

Application Boundary

Microservices Guide

Serverless Architectures

Micro Frontends

GUI Architectures

Presentation Domain Data Layering

ThoughtWorks Technology Radar

7

Techniques

Tools

Platforms

Languages & Frameworks

Adopt

Trial
Worth pursing
Try on projects that can handle risk

Assess
Worth exploring
How will it affect your enterprise

Hold
Proceed with caution

Techniques

8

Data Mesh

decentralized organizational and technical approach in
sharing, accessing and managing data for analytics and ML

CUPID

properties to achieve “joyful” code:
Code should be

composable,
follow the Unix philosophy
be predictable,
idiomatic and
domain based.

Techniques

9

The streaming data warehouse

SQL-based streaming applications across an enterprise
might constitute a streaming data warehouse

ksqlDB

Platforms

10

Apache Iceberg

Open table format for very large analytic data sets

Google Cloud Dataflow

Cloud-based data-processing service for both batch and real-time data-
streaming applications.

Temporal

Platform for developing long-running workflows, particularly for
microservice architectures.

Tools

11

AKHQ

GUI for Apache Kafka

Metaflow

Python library and back-end service that helps data scientists and engineers
build and manage production-ready data processing, ML training and
inference workflows.

12

What every computer science major should know
Dr. Matt Might
University of Utah

http://matt.might.net/articles/what-cs-majors-should-know/

13

What should every student know to get a good job?

What should every student know to maintain lifelong employment?

What should every student know to enter graduate school?

What should every student know to benefit society?

Portfolio verse Resume

14

A resume says nothing of a programmer's ability

Portfolio
Personal blog
Projects
Github
Open source projects

Technical Communication

15

Lone wolves in computer science are an endangered species

In smaller companies, whether or not a programmer can communicate
her ideas to management may make the difference between the
company's success and failure

Writing for Computer Science by Zobel.

Even a Geek Can Speak by Asher.

Unix Philosophy

16

linguistic abstraction and composition

Should be able to

Navigate and manipulate the filesystem;
Compose processes with pipes;
Comfortably edit a file with emacs and vim;
Create, modify and execute a Makefile for a software project;
Write simple shell scripts.

Unix Philosophy

17

Sample tasks

Find the five folders in a given directory consuming the most space

Report duplicate MP3s (by file contents, not file name) on a computer.

Take a list of names whose first and last names have been lower-cased, and
properly recapitalize them.

Find all words in English that have x as their second letter, and n as their
second-to-last.

Directly route your microphone input over the network to another computer's
speaker.

Replace all spaces in a filename with underscore for a given directory.

Report the last ten errant accesses to the web server coming from a specific IP
address.

Systems administration

18

Every modern computer scientist should be able to:

Install and administer a Linux distribution.

Configure and compile the Linux kernel.

Troubleshoot a connection with dig, ping and traceroute.

Compile and configure a web server like apache.

Compile and configure a DNS daemon like bind.

Maintain a web site with a text editor.

Cut and crimp a network cable.

http://matt.might.net/articles/how-to-make-your-own-cat-5-ethernet-cable/

Programming languages

19

Programming languages rise and fall with the solar cycle.

A programmer's career should not.

The best way to learn how to learn programming languages is to learn multiple
programming languages and programming paradigms.

To truly understand programming languages, one must implement one.

Programming languages

20

Racket

C

JavaScript

Squeak

Java

Standard ML

Prolog

Scala

Haskell

C++

Assembly

Racket

21

Aggressively simple syntax

For a small fraction of students, this syntax is an impediment.

To be blunt, if these students have a fundamental mental barrier to
accepting an alien syntactic regime even temporarily, they lack the
mental dexterity to survive a career in computer science.

Racket's powerful macro system and facilities for higher-order programming
thoroughly erase the line between data and code.

If taught correctly, Lisp liberates

https://htdp.org
How to Design Programs

Squeak

22

Squeak is a modern dialect of Smalltalk, purest of object-oriented languages

It imparts the essence of "object-oriented."

Introductions to Squeak

http://wiki.squeak.org/squeak/377

Architecture

23

There is no substitute for a solid understanding of computer architecture

transistors
gates
adders
muxes
flip flops
ALUs
control units
caches
RAM
GPU

Operating systems

24

Any sufficiently large program eventually becomes an operating system

To get a better understanding of the kernel, students could:

Print "hello world" during the boot process;

Design their own scheduler;

Modify the page-handling policy; and

Create their own filesystem.

Networking

25

Computer scientists should have a firm understanding of the network stack and
routing protocols within a network

Every computer scientist should implement the following:
an HTTP client and daemon;
a DNS resolver and server; and
a command-line SMTP mailer.

No student should ever pass an intro networking class without sniffing their
instructor's Google query off wireshark.

http://www.wireshark.org/

Security

26

Computer scientists must be aware of the means by which a program can be
compromised

At a minimum, every computer scientist needs to understand:
social engineering
buffer overflows
integer overflow
code injection vulnerabilities
race conditions
privilege confusion

Metasploit: The Penetration Tester's Guide

Security Engineering: A Guide to Building Dependable Distributed Systems

Software testing

27

Software testing must be distributed throughout the entire curriculum

He uses test cases turned in by students against all other students

Students don't seem to care much about developing defensive test cases,
but they unleash hell when it comes to sandbagging their classmates

Visualization

28

The Visual Display of Quantitative Information by Tufte

The modern world is a sea of data

http://www.amazon.com/gp/product/0961392142/ref=as_li_ss_tl?ie=UTF8&tag=ucmbread-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=0961392142

Graphics and simulation

29

There is no discipline more dominated by "clever" than graphics.

The field is driven toward, even defined by, the "good enough."

As such, there is no better way to teach clever programming or a solid
appreciation of optimizing effort than graphics and simulation.

Over half of the coding hacks I've learned came from my study of graphics.

Topics I left out

30

Databases
Artificial intelligence
Machine learning
Robotics
Software engineering
Parallelism
User experience design

31

Disarmingly Forthright MSCS Advice
Nick Black
http://nick-black.com/dankwiki/images/8/85/Msadvice.pdf

Read it

If you’ll only take away two things

32

Read the damn man pages

Check your damn return values

You’re a CS MS student. Act it

33

Join the ACM and IEEE

Don’t embarrass yourself
Passwords
Backups

If you don’t have at least 100 semi-frequent, provocative/informative
RSS feeds you’re checking a few times daily, you’re not learning
enough

Programming

34

Vast majority of code you’ll read is laughably broken

if you aren’t, at any given time, scandalized by code
you wrote five or even three years ago, you’re not
learning anywhere near enough

Seek out, study, and bookmark good code

Learn to program axiomatically

take each element of the system, language, and toolchain, and learn it throughout

Keep all your projects in source control systems like git or svn

