
CS 649 Big Data: Tools and Methods�
Fall Semester, 2022�

Doc 26 Kafka�
Apr 19, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/openpub/) license defines the copyright on this
document.

Streaming

The Problem

3

Web

Server

Database
Inventory system

Billing system

Shipping & Tracking system

Now add micro services

The Problem

4

An Improvement

5

The Log

6

What every software engineer should know about real-time data's unifying abstraction

Jay Kreps

Lead developer of Kafka

https://engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying

http://tinyurl.com/qc43s5j

Why logs are the basic data structure for distributed computing

What Is a Log?

7

Sequence number becomes timestamp

Databases and Logs

8

How to make actions ACID

Database

SQL request

Log

Log each operation

Use the log to recover past state

Physical logging

Log the state of the row that is changing

Logical logging

Log the SQL statement

The log contains Database History

9

With a complete log file we can

Recreate the current state of the database

Recreate the database for any time in the past

Used by in-memory databases

Keep current state of tables in memory

Each write operation is logged

To restart database replay log file

Replicating Databases

10

We can use the log to replicate the database

Inverting the Structure

11

Distributed Systems & Replication

12

Message System - Queue

13

9 2 13 6

Producers
Consumers

Scales well

No multi subscribers - once read data is gone

Message System Publish-Subscribe/Broadcast

14

Producers

Consumers

Multi subscribers

Does not scale

Message System Publish-Subscribe/Broadcast

15

Producers

Consumers

Multi subscribers

Does not scale

Message System Issues

16

Failure

Multi-machine

Load balancing

Redundancy

Basic Messaging System Issue

17

How to handle failure

Publisher fails

Consumer fails

Messenger node fails

Messenger system fails

Message Delivery Semantics

18

At most once

Messages may be lost but are never redelivered

At least once

Messages are never lost but may be redelivered

Exactly once

What you want

Each message is delivered once and only once

Apache Kafka

19

Unified, high-throughput, low-latency platform for handling real-time data feeds

Started at LinkedIn

Named after Franz Kafka - author

Kafka is a writing system

Lead developer liked Kafka's works

First release Jan 2011

Version 1.0 Nov 1, 2017

Developers left LinkIn formed Confluent

Few Users of Apache Kafka

20

Cisco Systems

eBay

IPinYou

Netflix

36 Kafka clusters

700 billion messages per day

Good article on problems running Kafka on AWS

The New York Times

Publish content to applications & system to make it available to readers

Spotify

Used to send logs from all hosts to Hadoop cluster

Reduced transfer time from 4 hours to 10 seconds

Uber

Walmart

Yelp

Related Tools

21

Apache ZooKeeper

 Distributed hierarchical key-value store

KSQL

Streaming SQL for Apache Kafka

Kafka Versions

22

1.0.0

Nov 1, 2017

0.11.0.0

June 2017

Guaranteed delivery

0.10.0.0

May 2016

Streams API

1.0.0

Improved Streams API

Better metrics on Kafka performance

Supports Java 9

Faster encryption

Tolerates disk failure better

JBOD broker tolerates one disk failure

Improved throughput on transactions

Kafka - Key Capabilities

23

Publish and subscribe to streams of records

Message queue or enterprise messaging system

Store streams of records in a fault-tolerant way

Process streams of records as they occur

24

Kafka is run as a cluster on one or more servers

The Kafka cluster stores streams of records in categories called topics

Each record consists of a key, a value, and a timestamp

Core API

25

Producer

Allow an application to publish stream of records to 1 or more topics

Consumer

Allow an application to subscribe to 1 or more topics and read stream of records

Streams

An application consume an input stream and produce an output stream

Connector

Producer or consumer connect Kafka topic to existing data systems

Connect to database could capture every change to a table

26

Kafka - Topic, Partitions, Logs

27

Topics, Partitions, Logs

28

Topic

A category for a stream of records

Can have 0, 1, or many consumers subscribe to it

Can have multiple partitions

Partition

Log of records for a topic

Stored on disk

Records are given sequential id

Each partition on different machine

Each partition replicated

Retaining records

29

Records are retained for a fixed time

Configurable

Records are not deleted after a read

Records are deleted at end of retention period even if not read

Number of records in single partition

Does not affect performance

Single partition must fit on one machine

Consumers & Partitions

30

Kafka server maintains offset for each consumer

Last read record

Makes consumers cheap to support

Consumer controls offset

Can go back

Skip ahead

Distribution of Partitions

31

Each Kafka server handles a share of partitions

Typically there are many topics

Each partition

Replicated on multiple machines

One machine is leader of partition

Others are followers

Each machine is leader for some partitions

When leader fails follower becomes leader

Producers

32

Publish data to topics of their choice

Producer chooses with partition to write to

Round robin

Select by key

Consumers

33

Consumers have a consumer group name

Each record in a topic is delivered to one consumer in each subscribing consumer group

Guarantees

34

Topic partition appends messages from same producer in the order they are sent

A consumer instance sees records in the order they are stored in partition log

For a topic with replication factor N,

we will tolerate up to N-1 server failures without losing any records committed to the log

What does not happen

35

Individual partitions are ordered by when messages arrive

There is no order kept between partitions in the same topic

Producer

Sends M1 to partition A

Then send M2 to partition B in same topic

Kafka does keep track that M1 arrived first

Partition A and B could be on different machines

Per-partition ordering + the ability to partition data by key is sufficient for most applications

Example - Logging User Web Activity

36

Partition1

Partition3

Kafka Server 1

Partition2

Partition4

Kafka Server 2

Web

Server

Web Server

Processes

Kafka Producers

U1

U2

U1

Example - Logging User Web Activity

37

Partition1

Partition3

Kafka Server 1

Partition2

Partition4

Kafka Server 2

U1

U2

U1

Consumer Group

If Need Strict Ordering of Messages

38

Use one partition for the topic

Means only one client per consumer group on that topic

Kafka Performance

39

On three cheap machines

Setup

6 machines

Intel Xeon 2.5 GHz processor with six cores

Six 7200 RPM SATA drives

32GB of RAM

1Gb Ethernet

Kafka cluster - 3 machines

Zookeeper - 1 machine

Generating load - 3 machines

Test uses 100 byte messages

http://tinyurl.com/ng2h9uh

6 partitions

Producer Throughput

40

Records/Second MB/sec

1 producer, no replication of partition 821,557 78.3

1 producer, 3 async replication 786,980 75.1

1 producer, 3 sync replication 421,823 40.2

3 producers, 3 async replication 2,025,032 193.0

7,290,115,200 Records/Hour

Producer Throughput Versus Stored Data

41

Does the amount of stored data affect performance?

Persisting messages is O(1)

Consumer Throughput

42

Records/Second MB/sec

1 consumer 940,521 89.7

3 consumers - same topic 2,615,968 249.5

6 partitions, 3x async replicated

End-to-end Latency

43

Producer
ConsumerKafka

System

2ms - median

3ms - 99th percentile

14ms - 99.9 percentile

What Makes Kafka Fast - Partitions

44

Allows concurrent writes & reads on same topic

What Makes Kafka Fast - Messages

45

Messages

Binary format

Batched

Compressed

 bit 0~2:

 0: no compression

 1: gzip

 2: snappy

 3: lz4

Producer convert message into binary

Kafka treats message as bits

Consumer needs to know how to unpack message

Producer supplies schema

Adds schema to ZooKeeper

What Makes Kafka Fast - Use the Filesystem

46

Linear read/writes are very fast on hard drives

JBOD configuration six 7200rpm SATA drives 600MB/sec

Modern OS (Linux)

Heavily optimized

read-ahead, write-behind

Will use all free memory for disk cache

JVM

Memory overhead of objects is high

Java garbage collection becomes slow as heap data increases

So

Write data to disk

Use as little memory as possible

Let OS use nearly all memory for disk cache

28-30GB cache on 32GB machine

What Makes Kafka Fast - sendfile

47

Normal path to send a file on network

1 OS copies file Disk -> page cache in kernel space

2 Application copies data: page cache -> user-space

3 Application copies data: user-space -> socket buffer in kernel space

4 OS copies data: socket buffer -> NIC buffer

Using sendfile to send a file on network

1. OS copies file: Disk -> NIC buffer

Using OS pagecache + sendfile means when consumers are mostly caught up

Files served from cache

