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Clustering
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Unsupervised machine learning


Algorithm “looks” for structure in the data


Clustering 

Groups data that is similar to each other in some way
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Uses for Clustering
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Bioinformatics

Sequence analysis


Group sequences into gene families

Human genetic clustering


Infer ancestral background


Market research

Partition consumers into market segments based on surveys & test panels


Image segmentation

Divide image into regions for border detection or object recongnition
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Recommender Systems
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Examples

Last.fm

Pandora Radio

Netflix recommendations

Amazon recommendations

Facebook friend recommendations


Machine Learning algorithms used

Bayesian Classifiers

Cluster analysis

Decision trees

Artificial neural networks
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Clustering
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Clustering algorithms group data based on distance

What is distance?


Normalizing data affects distance
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Distance
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Distances.jl

Euclidean distance

Squared Euclidean distance

Periodic Euclidean distance

Cityblock distance

Total variation distance

Jaccard distance

Rogers-Tanimoto distance

Chebyshev distance

Minkowski distance

Hamming distance

Cosine distance

Correlation distance

Chi-square distance

Kullback-Leibler divergence

Generalized Kullback-Leibler divergence

Rényi divergence

Jensen-Shannon divergence

Mahalanobis distance

Squared Mahalanobis distance

Bhattacharyya distance

Hellinger distance

Haversine distance

Mean absolute deviation

Mean squared deviation

Root mean squared deviation

Normalized root mean squared deviation

Bray-Curtis dissimilarity

Bregman divergence
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euclidean(x, y) = 	 sqrt(sum((x - y) .^ 2))

euclidean([2,0],[0,2]) == 2.83


cityblock(x, y) =	 sum(abs(x - y))

cityblock([2,0],[0,2]) == 4


hamming(x, y) =	 sum(x .!= y)

hamming([2,0],[0,2]) == 2

hamming([9,0],[0,2]) == 2


cosine_dist(x,y) = cos(x,y)

cosine_dist([2.0,0.0], [0.0,2.0])) == 1

cosine_dist([2.0,0.0], [10.0,0.0])) == 0


jaccard(x, y)	 = 1 - sum(min(x, y)) / sum(max(x, y))

jaccard([2,0],[0,2])  == 1

using Distances
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Normalization
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Clustering relies on distance between data points which scale can affect


Cost

Weight

Pounds

Cost

Weight

Grams
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Normalization
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Clustering relies on distance between data points which scale can affect


Max-min

Sigmoidal normalization

Mean-standard deviation

Softmax



D13

Max-min
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min_max_norm(x) = (x - minimum(x)) / (maximum(x) - minimum(x))

maps data -> [0, 1]

Cheap to compute

Outliers compress the data
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Mean-standard deviation (Z-score)
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mean_std_norm(x) = (x - mean(x)) / std(x)

Unbounded, but mainly in [-3, 3]

Contains negative numbers

Has outlier issues

1

2

3

4

9

20

 -0.766406

 -0.62706 

 -0.487713

 -0.348367

  0.348367

  1.88118 

1

2

3

4

9

20

2000

 -0.385249

 -0.383922

 -0.382595

 -0.381268

 -0.374632

 -0.360034

  2.2677  



D13

Sigmoidal Normalization
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sigmoidal_norm(x) = 1 ./ (1 + exp(-x))

Range (0, 1)

Not very useful as given in text
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Logistic Function
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logistic_norm(x,k,c) = 1 ./(1 + exp(-k*(x - c)))
c = 0

k = 1, 0.5, 0.25, 0.1

k=1

k=0.1

k=0.25
Range (0, 1)


Need to select k & c

Commonly used in neural networks


Bases of Elo ranking system
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Logistic Function
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logistic_norm(x,k,c) = 1 ./(1 + exp(-k*(x - c)))
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Softmax Normalization
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softmax_norm(x) = 1 ./(1 + exp(-(x - mean(x))/std(x)))

Range (0, 1)

mean -> 0.5

Near linear within standard deviation of mean

Keeps outliers, but reduces their influence

1

2

3

4

9

20

 0.317257

 0.348178

 0.380432

 0.413779

 0.586221

 0.867747

1

2

3

4

9

20

2000

 0.404861

 0.405181

 0.405501

 0.405821

 0.407422

 0.410951

 0.906166



D13

Text Normalization
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Extracting text from xml, json


tokenizing


Punctuation & non text characters ()


Non relavent word

the, and, this, ...


Root (stem) words

like, liked
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Stem Words
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worked

working 


worker 

workers


sleep

sleeping

slept
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Text & Distance - Jaccard Distance
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Let A and B be sets


The Jaccard index or Jaccard similarty coefficient is

Range [0, 1]


If A == B then J(A,B) = 1

Jaccard Distance for sets


dj(A, B) = 1 - J(A, B)
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Example
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a = StringDocument("Music is the food of love")

b = StringDocument("War is the locomotive of history")

c = StringDocument("It's lovely that you're musical")

jaccard_dist(a,b) == 0.667

jaccard_dist(a,c) == 1.00
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Example Revisited
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a = StringDocument("Music is the food of love")

b = StringDocument("War is the locomotive of history")

c = StringDocument("It's lovely that you're musical")


normalize_text!(a)

normalize_text!(b)

normalize_text!(c)


jaccard_dist(a,b) == 1.00

jaccard_dist(a,c) ==  0.333
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Text as Vectors - Term Frequency
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Find all unique words in your text - say n words


Map each word to a number from 1 - n


That number becomes the words location in a vector


Count the number of time the word appears 


Place that number in the vectors location
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Example
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"Music is the food of love"

"War is the locomotive of history"

"It's lovely that you're musical"

"music food love"

"war locomotive histori"

"love  music"

 "food"            = 1     

 "histori"         =  2  

 "locomotive" =  3

 "love"            = 4     

 "music"         = 5   

 "war"            =  6      

"music food love" -> [1, 0, 0, 1, 1, 0]

"war locomotive histori" -> [0, 1, 1, 0, 0, 1]

"love  music"  -> [0, 0, 0, 1, 1, 0]
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Cosine Distance
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cos(0) = 1.0


cos(deg2rad(90)) = 6.12e-17


cos(deg2rad(180)) = -1.00
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Cosine Distance
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"music food love" -> [1, 0, 0, 1, 1, 0]

"war locomotive histori" -> [0, 1, 1, 0, 0, 1]

"love  music"  -> [0, 0, 0, 1, 1, 0]

"music food love" verses "war locomotive histori"


	 cosine_dist([1, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]) = 1.00


"music food love" verses "love  music"


	 cosine_dist([1, 0, 0, 1, 1, 0]), [0, 0, 0, 1, 1, 0]) = 0.184
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Types of Clustering
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Center-based Cluster Algorithms

k-nearest neighbor

k-means

k-medoids

Affinity propagation

Density clusters

DBSCAN
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K-Clustering - Basic Idea
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Pick k points to be start of each cluster


1. Add each data point to the nearest cluster


2. Readjust the k points for each cluster


Repeat 1 & 2 until clusters are stable or reach given number of iterations
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K-means
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Select k points m11, m21, ... , mk1 

For each data point x assign it to the mean that it is closest to form k clusters 

Use square of the (Euclidiean) distance 

For each cluster compute the mean of that cluster

Get new means m12, m22, ... , mk2 


If points changed clusters repeat
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Example
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K-mediods
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Differs from K-means in two ways


Centers of each cluster is data point nearest the mean point


Uses distance matrix so can use any definition of distance
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Sample Dataset
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xclara = dataset("cluster", "xclara"
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K-Means k= 3
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Issues
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Picking initial means


Picking number of clusters


Measuring how good the clusters are


Normalization of data


What is distance
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Varying k
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2 4 5

6 6 6
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k-Means & Clusters with no center
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k-Means & Clusters with no center
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from sklearn.datasets import make_moons

X, y = make_moons(200, noise=.05, random_state=0)

plt.scatter(X[:, 0], X[:, 1]);
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k-Means & Clusters with no center
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from sklearn.cluster import KMeans

import matplotlib.pyplot as plt


labels = KMeans(2, random_state=0).fit_predict(X)

plt.scatter(X[:, 0], X[:, 1], c=labels,

            s=50, cmap='viridis');
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k-clustering Algorithms
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Assume that 


Each cluster is centered around a point


Clusters are convex


You know how many clusters there should be



D13

SpectralClustering
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from sklearn.cluster import SpectralClustering

model = SpectralClustering(n_clusters=2, affinity='nearest_neighbors',

                           assign_labels='kmeans')

labels = model.fit_predict(X)

plt.scatter(X[:, 0], X[:, 1], c=labels,

            s=50, cmap='viridis');

Transforms data then uses K-menas
useful when the structure of the individual clusters is highly non-convex
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Picking initial Seeds for Clusters
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Clustering algorithms try to find the best clusters


But can get stuck in local extrema
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DBSCAN
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Developed in 1996

One of most commonly used clustering algorithms

Most cited in scientific literature

Density-based spatial clustering of applications with noise 

Groups points together that are closely packed together
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Terms
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Parameters 	 ϵ- distance

	 	 	 	 	 minPts

p is a core point if


There are minPts within distance ϵ of p including p


Directly reachable points


All points within distance ϵ of a core point p are directly reachable from p

 

q is reachable from p if


There is a path p1, ..., pn with p1 = p and pn = q,

 pi+1 is directly reachable from pi


Outlier

Points not reachable from any other points


A core point and all points reachable from it form a cluster
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Example - minPts = 4
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DBSCAN Issues
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ϵ & minPts determine the clusters


No need to determine number of clusters


Robust to outliers


Can be implemented with runtime O(n log n)


Can not handle data with varying densities


High demensional data causes problems with selecting  ϵ & minPts
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DBSCAN with varying eps
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eps = 6

minpts = 10

eps = 7

minpts = 10

eps = 8

minpts = 10
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DBSCAN & Non centered clusters
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Curse of Dimensionality
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As dimensions rise every point tends to become equally far from every other point
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Reducing Dimensions
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Some dimensions in a data set have less variation that others


So contribute less


These dimensions may not be the ones given in the data
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PCA - Principle Component Analysis
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Used to reduce the dimensionality of data


Changes the dimension of the data so


First dimension has the greatest variance

Second dimension has second greatest variance

...


Can then select first K dimensions to work with


Data is transformed into different coordinate system
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Example
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http://setosa.io/ev/principal-component-analysis/
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Example - Generate Data
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import numpy as np

from matplotlib import pyplot as plt

plt.figure(figsize=(20,6)) 

rng = np.random.RandomState(1)

X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T

plt.scatter(X[:, 0], X[:, 1])

plt.axis('equal');
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Example - Compute PCA
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from sklearn.decomposition import PCA

pca = PCA(n_components=2)

pca.fit(X)

print(pca.components_) [[-0.94446029 -0.32862557]
 [-0.32862557  0.94446029]]

Vector of two Components

print(pca.explained_variance_) [0.7625315 0.0184779]

How much variation on each axis

print(pca.mean_) [ 0.03351168 -0.00408072]

Center of Data
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New Axis
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If we project all data on the long axis 

1 dimensional data

76% of variation
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[0.51123202 0.09867101]How much variation on each axis
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Drawing Vector
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def draw_vector(v0, v1, ax=None):

    ax = ax or plt.gca()

    arrowprops=dict(arrowstyle='->',

                    linewidth=2,

                    shrinkA=0, shrinkB=0)

    ax.annotate('', v1, v0, arrowprops=arrowprops)


# plot data

plt.figure(figsize=(20,6)) 

plt.scatter(X[:, 0], X[:, 1], alpha=0.2)

for length, vector in zip(pca.explained_variance_, pca.components_):

    v = vector * 3 * np.sqrt(length)

    draw_vector(pca.mean_, pca.mean_ + v)

plt.axis('equal');
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Creating one Moon
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from sklearn.decomposition import PCA

pca_moon = PCA(n_components=2)

pca_moon.fit(moon)

print(pca_moon.explained_variance_)

from sklearn.datasets import make_moons

X, y = make_moons(200, noise=.05, random_state=0)

moon = X[y == 0]

plt.figure(figsize=(20,6))

plt.scatter(moon[:, 0], moon[:, 1]);


