CS 649 Big Data: Tools and Methods
 Fall Semester, 2022
 Doc 19 Clustering
 Mar 10, 2022

Copyright ©, All rights reserved. 2022 SDSU \& Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

Clustering

Unsupervised machine learning

Algorithm "looks" for structure in the data

Clustering
Groups data that is similar to each other in some way

Uses for Clustering

Bioinformatics
Sequence analysis
Group sequences into gene families
Human genetic clustering
Infer ancestral background

Market research
Partition consumers into market segments based on surveys \& test panels

Image segmentation
Divide image into regions for border detection or object recongnition

Recommender Systems

Examples
Last.fm
Pandora Radio
Netflix recommendations
Amazon recommendations
Facebook friend recommendations
Machine Learning algorithms used
Bayesian Classifiers
Cluster analysis
Decision trees
Artificial neural networks

Clustering

Clustering algorithms group data based on distance

What is distance?

Normalizing data affects distance

Distance

Distances.j

Euclidean distance
Squared Euclidean distance
Periodic Euclidean distance
Cityblock distance
Total variation distance
Jaccard distance
Rogers-Tanimoto distance
Chebyshev distance
Minkowski distance
Hamming distance
Cosine distance
Correlation distance
Chi-square distance
Kullback-Leibler divergence

Generalized Kullback-Leibler divergence
Rényi divergence
Jensen-Shannon divergence
Mahalanobis distance
Squared Mahalanobis distance
Bhattacharyya distance
Hellinger distance
Haversine distance
Mean absolute deviation
Mean squared deviation
Root mean squared deviation
Normalized root mean squared deviation
Bray-Curtis dissimilarity
Bregman divergence

```
    using Distances
euclidean(x, y) = sqrt(sum((x-y).^ 2))
    euclidean([2,0],[0,2]) == 2.83
cityblock(x,y) = sum(abs(x-y))
    cityblock([2,0],[0,2]) == 4
hamming(x,y)= sum(x !!= y)
    hamming([2,0],[0,2]) == 2
    hamming([9,0],[0,2]) == 2
cosine_dist(x,y) = cos(x,y)
    cosine_dist([2.0,0.0], [0.0,2.0])) == 1
    cosine_dist([2.0,0.0], [10.0,0.0])) == 0
jaccard(x, y) = 1 - sum(min(x, y)) / sum(max(x, y))
    jaccard([2,0],[0,2]) == 1
```


Normalization

Clustering relies on distance between data points which scale can affect

Normalization

Clustering relies on distance between data points which scale can affect

Max-min

Mean-standard deviation

Sigmoidal normalization

Softmax

Max-min

min_max_norm $(x)=(x-\operatorname{minimum}(x)) /(\operatorname{maximum}(x)-\operatorname{minimum}(x))$
maps data -> [0, 1]
Cheap to compute
Outliers compress the data

1	0.0	1	0.0
2	0.0526316	2	0.00050025
3	0.105263	3	0.0010005
4	0.157895	4	0.00150075
9	0.421053	9	0.004002
20	1.0	20	0.00950475
		2000	1.0

Mean-standard deviation (Z-score)

mean_std_norm $(x)=(x-\operatorname{mean}(x)) / \operatorname{std}(x)$
Unbounded, but mainly in [-3, 3]
Contains negative numbers
Has outlier issues

1	-0.766406	1	-0.385249
2	-0.62706	2	-0.383922
3	-0.487713	3	-0.382595
4	-0.348367	4	-0.381268
9	0.348367	9	-0.374632
20	1.88118	20	-0.360034
		2000	2.2677

Sigmoidal Normalization

sigmoidal_norm $(x)=1 . /(1+\exp (-x))$

Range (0, 1)
Not very useful as given in text

1	0.731059
2	0.880797
3	0.952574
4	0.982014
9	0.999877
20	1.0

1	0.731059
2	0.880797
3	0.952574
4	0.982014
9	0.999877
20	1.0
2000	1.0

Logistic Function

logistic_norm $(x, k, c)=1 . /\left(1+\exp \left(-k^{*}(x-c)\right)\right)$
$c=0$
$k=1,0.5,0.25,0.1$

Range (0, 1)

Need to select k \& c

Commonly used in neural networks

Bases of Elo ranking system

Logistic Function

logistic_norm $(\mathrm{x}, \mathrm{k}, \mathrm{c})=1 . /\left(1+\exp \left(-\mathrm{k}^{*}(\mathrm{x}-\mathrm{c})\right)\right)$				
	$\mathrm{k}=1, \mathrm{c}=0$	$\mathrm{k}=0.5, \mathrm{c}=0$	$\mathrm{k}=0.2, \mathrm{c}=0$	$\mathrm{k}=0.2, \mathrm{c}=9$
1	0.731059	0.622459	0.549834	0.167982
2	0.880797	0.731059	0.598688	0.197816
3	0.952574	0.817574	0.645656	0.231475
4	0.982014	0.880797	0.689974	0.268941
9	0.999877	0.989013	0.858149	0.5
20	1.0	0.999955	0.982014	0.90025
				0.167982
1	0.731059	0.622459	0.549834	0.197816
2	0.880797	0.731059	0.598688	0.231475
3	0.952574	0.817574	0.645656	0.268941
4	0.982014	0.880797	0.689974	0.5
9	0.999877	0.989013	0.858149	0.90025
20	1.0	0.999955	0.982014	1.0

Softmax Normalization

softmax_norm $(x)=1 . /(1+\exp (-(x-\operatorname{mean}(x)) / \operatorname{std}(x)))$

Range (0,1)
mean -> 0.5
Near linear within standard deviation of mean
Keeps outliers, but reduces their influence

1	0.317257	1	0.404861
2	0.348178	2	0.405181
3	0.380432	3	0.405501
4	0.413779	4	0.405821
9	0.586221	9	0.407422
20	0.867747	20	0.410951
		2000	0.906166

Text Normalization

Extracting text from xml , json
tokenizing

Punctuation \& non text characters ()

Non relavent word
the, and, this, ...

Root (stem) words
like, liked

Stem Words

worked
working
worker
workers
sleep
sleeping
slept

Text \& Distance - Jaccard Distance

Let A and B be sets

The Jaccard index or Jaccard similarty coefficient is
$\mathrm{J}(A, B)=\frac{|A \cap B|}{|A \cup B|}$

$$
\begin{aligned}
& \text { Range }[0,1] \\
& \text { If } A==B \text { then } J(A, B)=1
\end{aligned}
$$

Jaccard Distance for sets
$\mathrm{dj}(\mathrm{A}, \mathrm{B})=1-\mathrm{J}(\mathrm{A}, \mathrm{B})$

Example

```
a = StringDocument("Music is the food of love")
b = StringDocument("War is the locomotive of history")
c = StringDocument("It's lovely that you're musical")
```

```
jaccard_dist(a,b) == 0.667
jaccard_dist(a,c) == 1.00
```


Example Revisited

a = StringDocument("Music is the food of love")
b = StringDocument("War is the locomotive of history")
c = StringDocument("It's lovely that you're musical")
normalize_text!(a)
normalize_text!(b)
normalize_text!(c)
jaccard_dist(a,b) == 1.00
jaccard_dist $(\mathrm{a}, \mathrm{c})==0.333$

Text as Vectors - Term Frequency

Find all unique words in your text - say n words

Map each word to a number from $1-\mathrm{n}$

That number becomes the words location in a vector

Count the number of time the word appears

Place that number in the vectors location

Example

"Music is the food of love"
"War is the locomotive of history"
"It's lovely that you're musical"

"food"	$=1$
"histori"	$=2$
"locomotive"	$=3$
"love"	$=4$
"music"	$=5$
"war"	$=6$

"music food love"
"war locomotive histori"
"love music"

```
"music food love" -> [1, 0, 0, 1, 1, 0]
"war locomotive histori" -> [0, 1, 1, 0, 0, 1]
    "love music" -> [0, 0, 0, 1, 1, 0]
```


Cosine Distance

Cosine Distance

"music food love" -> $[1,0,0,1,1,0]$
"war locomotive histori" -> $[0,1,1,0,0,1]$
"love music" -> [0, 0, 0, 1, 1, 0]
"music food love" verses "war locomotive histori"

$$
\text { cosine_dist([1, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]) }=1.00
$$

"music food love" verses "love music"

$$
\text { cosine_dist([1, 0, 0, 1, 1, 0]), [0, 0, 0, 1, 1, 0]) }=0.184
$$

Types of Clustering

Center-based Cluster Algorithms
k-nearest neighbor
k-means
k-medoids
Affinity propagation

Density clusters
DBSCAN

K-Clustering - Basic Idea

Pick k points to be start of each cluster

1. Add each data point to the nearest cluster
2. Readjust the k points for each cluster

Repeat 1 \& 2 until clusters are stable or reach given number of iterations

K-means

Select k points $m_{1}{ }^{1}, m_{2}{ }^{1}, \ldots, m_{k}{ }^{1}$

For each data point x assign it to the mean that it is closest to form k clusters
Use square of the (Euclidiean) distance

For each cluster compute the mean of that cluster Get new means $m_{1}{ }^{2}, m_{2}{ }^{2}, \ldots, m_{k}{ }^{2}$

If points changed clusters repeat

Example

K-mediods

Differs from K-means in two ways

Centers of each cluster is data point nearest the mean point
Uses distance matrix so can use any definition of distance

Sample Dataset
 xclara = dataset("cluster", "xclara"

K-Means k= 3

Issues

Picking initial means

Picking number of clusters

Measuring how good the clusters are

Normalization of data

What is distance

Varying k

k-Means \& Clusters with no center

k-Means \& Clusters with no center

from sklearn.datasets import make_moons
X, y = make_moons(200, noise=.05, random_state=0)
plt.scatter(X[:, 0], X[:, 1]);

k-Means \& Clusters with no center

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
labels $=$ KMeans $(2$, random_state $=0)$.fit_predict (X)
plt.scatter(X[:, 0], X[:, 1], c=labels,
s=50, cmap='viridis');

k-clustering Algorithms

Assume that

Each cluster is centered around a point

Clusters are convex

You know how many clusters there should be

SpectralClustering

Transforms data then uses K-menas
useful when the structure of the individual clusters is highly non-convex
from sklearn.cluster import SpectralClustering
model = SpectralClustering(n_clusters=2, affinity='nearest_neighbors',
assign_labels='kmeans')
labels $=$ model.fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels, $s=50$, cmap='viridis');

Picking initial Seeds for Clusters

Clustering algorithms try to find the best clusters
But can get stuck in local extrema

DBSCAN

Density-based spatial clustering of applications with noise

Groups points together that are closely packed together

Developed in 1996
One of most commonly used clustering algorithms
Most cited in scientific literature
p is a core point if
There are minPts within distance $\boldsymbol{\epsilon}$ of p including p

Directly reachable points
All points within distance $\boldsymbol{\epsilon}$ of a core point p are directly reachable from p
q is reachable from p if
There is a path p_{1}, \ldots, p_{n} with $p_{1}=p$ and $p_{n}=q$, p_{i+1} is directly reachable from p_{i}

Outlier
Points not reachable from any other points

A core point and all points reachable from it form a cluster

Example - minPts $=4$

DBSCAN Issues

$\epsilon \&$ minPts determine the clusters

No need to determine number of clusters

Robust to outliers

Can be implemented with runtime $O(n \log n)$

Can not handle data with varying densities

High demensional data causes problems with selecting $\boldsymbol{\epsilon} \&$ minPts

DBSCAN with varying eps

eps $=7$
minpts $=10$

eps $=8$
minpts $=10$

DBSCAN \& Non centered clusters

Curse of Dimensionality

As dimensions rise every point tends to become equally far from every other point

\cdots Minimum Distance - Maximum Distance

Reducing Dimensions

Some dimensions in a data set have less variation that others

So contribute less

These dimensions may not be the ones given in the data

PCA - Principle Component Analysis

Used to reduce the dimensionality of data

Changes the dimension of the data so

First dimension has the greatest variance
Second dimension has second greatest variance

Can then select first K dimensions to work with

Data is transformed into different coordinate system

Example

http://setosa.io/ev/principal-component-analysis/

Example - Generate Data

import numpy as np
from matplotlib import pyplot as plt
plt.figure(figsize $=(20,6)$)
rng $=n p$. random. RandomState(1)
$X=n p . d o t(r n g . r a n d(2,2)$, rng.randn(2, 200)).T
plt.scatter(X[:, 0], X[:, 1])
plt.axis('equal');

Example - Compute PCA

```
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)
Vector of two Components
print(pca.components_)
\[
\begin{aligned}
& \left.\left[\begin{array}{l}
{[-0.94446029} \\
{[-0.32862557]} \\
{[-0.32862557}
\end{array} 0.94446029\right]\right]
\end{aligned}
\]
```

How much variation on each axis
print(pca.explained_variance_)
$\left[\begin{array}{ll}0.7625315 & 0.0184779\end{array}\right]$

Center of Data
print(pca.mean_)
[0.03351168 -0.00408072]

New Axis

If we project all data on the long axis
1 dimensional data
76% of variation

How much variation on each axis $\quad\left[\begin{array}{lll}0.51123202 & 0.09867101\end{array}\right]$

Drawing Vector

```
def draw_vector(v0, v1, ax=None):
    ax = ax or plt.gca()
    arrowprops=dict(arrowstyle='->',
        linewidth=2,
        shrinkA=0, shrinkB=0)
    ax.annotate(", v1, v0, arrowprops=arrowprops)
# plot data
plt.figure(figsize=(20,6))
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)
for length, vector in zip(pca.explained_variance_, pca.components_):
    v = vector * 3 * np.sqrt(length)
    draw_vector(pca.mean_, pca.mean_+v)
plt.axis('equal');
```


Creating one Moon

```
from sklearn.datasets import make_moons
\(X, y=\) make_moons(200, noise \(=.05\), random_state \(=0\) )
moon \(=X[y==0]\)
plt.figure(figsize \(=(20,6)\) )
plt.scatter(moon[:, 0], moon[:, 1]);
```

from sklearn.decomposition import PCA
pca_moon = PCA(n_components=2)
pca_moon.fit(moon)
print(pca_moon.explained_variance_)

