CS 649 Big Data: Tools and Methods Spring Semester, 2022 Doc 16 Regression Mar 1, 2022

Copyright ©, All rights reserved. 2022 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/openpub/) license defines the copyright on this document.

Machine Learning

Supervised Classification

Unsupervised Regression

Reinforcement learning Clustering

Density Estimation

Dimensionality Reduction

Supervised learning

Artificial neural network

Bayesian statistics

Bayesian network

Gaussian process regression

Inductive logic programming

Learning Vector Quantization

Logistic Model Tree

Nearest Neighbor Algorithm

Random Forests

Ordinal classification

ANOVA

Linear classifiers

Fisher's linear discriminant

Linear regression

Logistic regression

Multinomial logistic regression

Naive Bayes classifier

Quadratic classifiers

k-nearest neighbor

Boosting

Decision trees

Random forests

Bayesian networks

Naive Bayes

Hidden Markov models

Unsupervised learning

Expectation-maximization algorithm
Vector Quantization
Generative topographic map
Information bottleneck method
Artificial neural networks

Hierarchical clustering
Single-linkage clustering
Conceptual clustering
Cluster analysis[edit]
K-means algorithm
Fuzzy clustering
DBSCAN
OPTICS algorithm

Outlier Detection

Local Outlier Factor

Other

Reinforcement learning
Temporal difference learning
Q-learning
Learning Automata
SARSA

Deep learning

Deep belief networks

Deep Boltzmann machines

Deep Convolutional neural networks

Deep Recurrent neural networks

Hierarchical temporal memory

Machine Learning & Patterns

Machine learning algorithms

Detect patterns

Generate models based on those patterns

Feed a neural network pictures of cats

Neural net can identify cats

Can automate finding cat photo on internet

Drive a car with neural network "watching" You actions Videos of surroundings

Neural net can identify patterns & start to drive

Limits of Pattern Matching

$$1+4=5$$
 $2+5=12$
 $3+6=21$
 $8+11=?$

$$1*(4+1)=5$$

$$2*(5+1)=12$$

$$3*(6+1)=21$$

$$8*(11+1)=96$$

$$0 + 1 + 4 = 5$$

$$5 + 2 + 5 = 12$$

$$12 + 3 + 6 = 21$$

$$21 + 8 + 11 = 40$$

Underspecification in Machine Learning

Underspecification Presents Challenges for Credibility in Modern Machine Learning Nov 2020

Authored by 40 Al researchers at Google

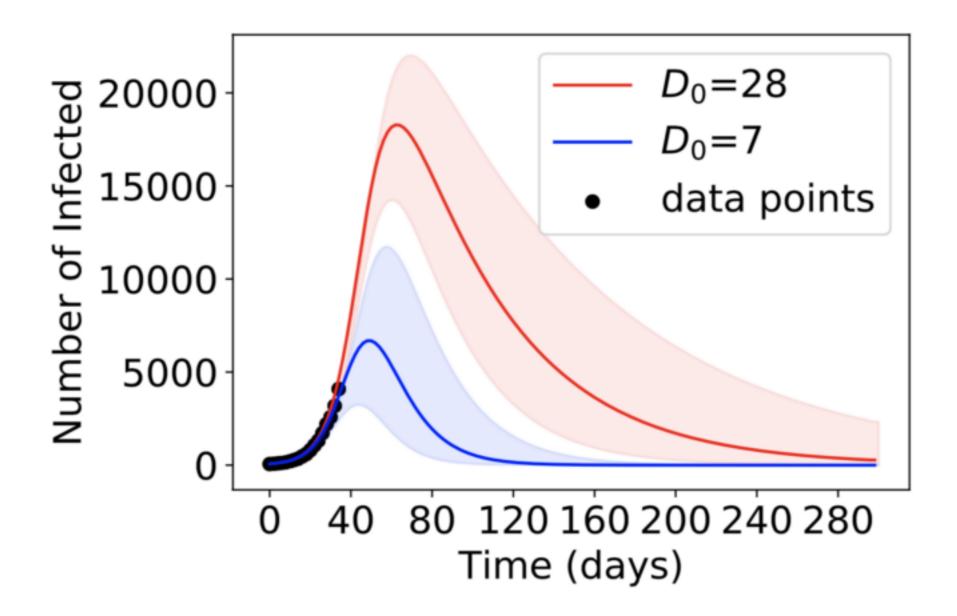
"ML models often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification as a key reason for these failures. An ML pipeline is underspecified when it can return many predictors with equivalently strong held-out performance in the training domain."

"The first claim is that underspecification in ML pipelines is a key obstacle to reliably training models that behave as expected in deployment"

"The second claim is that underspecification is ubiquitous in modern applications of ML, and has substantial practical implications"

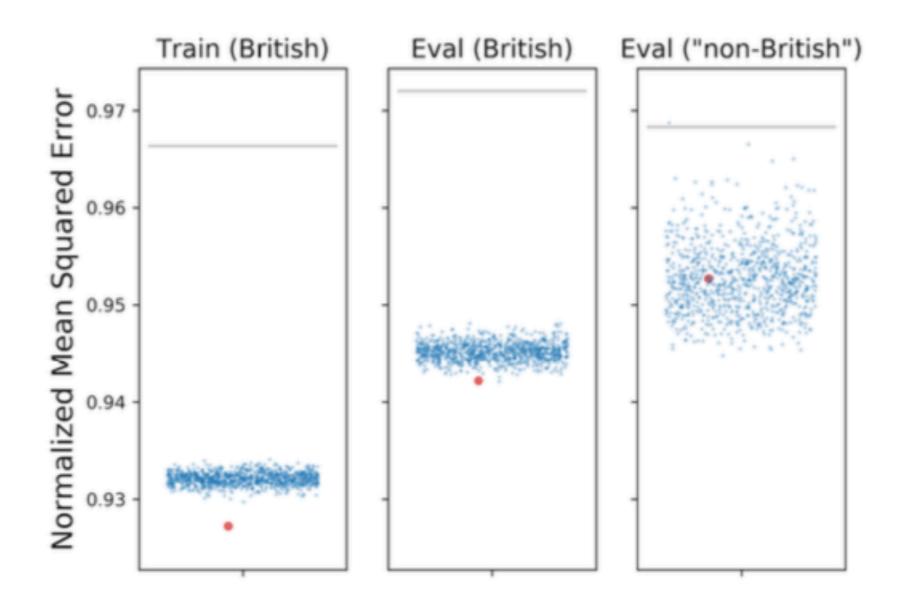
https://arxiv.org/abs/2011.03395

Underspecification



https://soccermatics.medium.com/is-googles-ai-research-about-to-implode-4e1ab194fc0e

Underspecification in medical genomics



Is Google's AI research about to implode?

David Sumpter Feb 19, 2021

https://soccermatics.medium.com/is-googles-ai-research-about-to-implode-4e1ab194fc0e

Mathematical modeling consists of three components:

Assumptions:

Taken from our experience and intuition as basis of our thinking about a problem.

Model:

Representation of our assumptions in a way that we can reason as an equation or a simulation

Data:

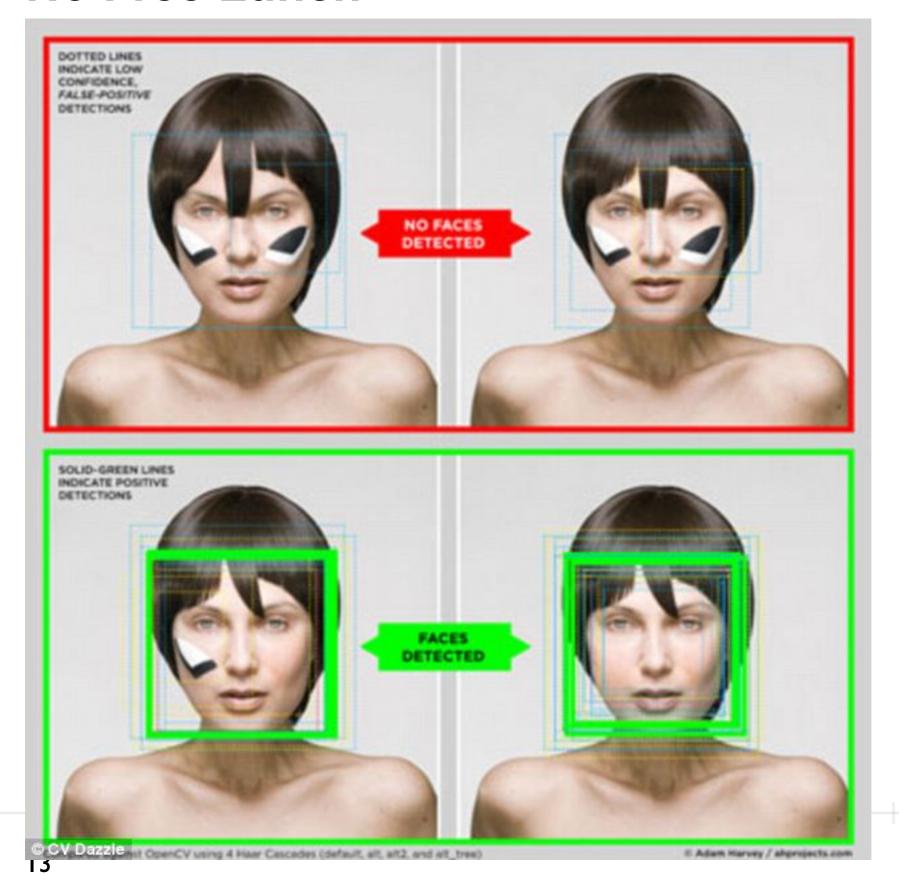
What we measure and understand about the real world

No Free Lunch Theorems

David Wolpert, 1997

For every pattern a machine learning algorithm is good at learning, there's another pattern that same learner would be terrible at picking up

No Free Lunch



7 Deadly Sins of Al Predictions

Rodney Brooks, October 6, 2017

https://goo.gl/oK6z5Z

1. Amara's law

We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.

Example U.S. Global Positioning System (GPS)

Started 1978

Precise delivery of bombs

First real use 1991, but not fully embraced by US military for several more years

Now

On mobile phones

Tracks planes, trucks

Sync US electrical grid

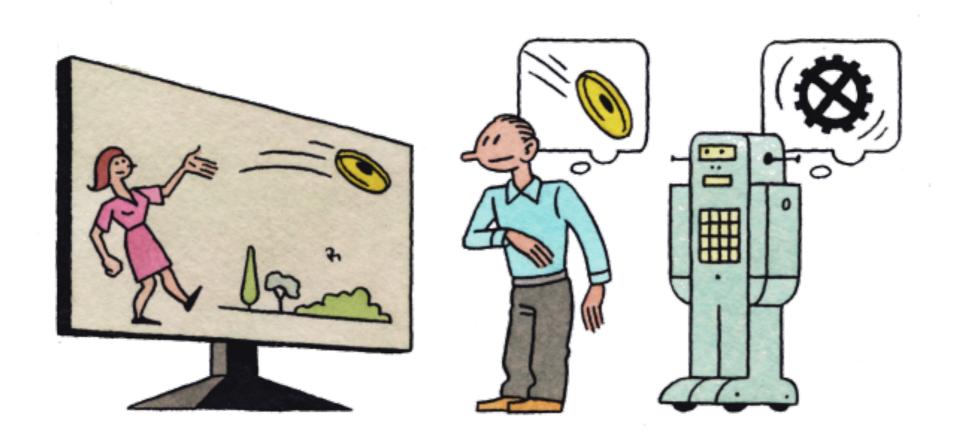
Determines which seed to plant in a field

7 Deadly Sins of Al Predictions

Rodney Brooks, October 6, 2017

https://goo.gl/oK6z5Z

3. Performance versus competence



7 Deadly Sins of Al Predictions

Rodney Brooks, October 6, 2017

https://goo.gl/oK6z5Z

3. Exponentials

Exponential growth not sustainable

iPod memory

year	gigabytes	
2002	10	
2003	20	
2004	40	
2006	80	
2007	160	

Deep Learning Breakthrough

Breakthrough paper on deep learning - back propagation 1986

Idea was abandoned for ~20 years because it was not producing results

17 D'

Models

Machine Learning algorithms produce models

Models allow predictions or offer insights

Examples

Decreasing latency by X increases Amazon's daily revenue by Y

White males without college degrees favor Trump by X% Females favor Clinton by Y%

. . .

Models Approximate Reality

World is flat

World is a sphere

World is an oblate ellipsoid

Does the model provide useful predictions/insights

Under what conditions is the model useful

What are the estimates of the model's error

Multiple Factors in Model

Amazon's daily revenue depends on

Latency

Price Some factors will be more important

D11

Steps needed to order

Page layout Stochastic in nature

Relevant suggestions

Search results

Shipping costs

Font sizes

20

Color Independent variables

Regression

Regression

Measure of relation between mean of one variable (dependent) on

one or more other variables (independent)

In chapter 11 of Julia for Data Science

Download the Jupyter notebook before reading

https://technicspub.com/analytics/

https://app.box.com/v/codefiles

Overview

Linear regression

Multiple linear regression

Generalized linear regression (model)

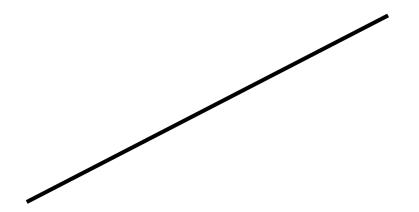
Is the dependent variable related to the independent variable

Generating the model

Error in the model

Effect of independent variables

Linear Regression

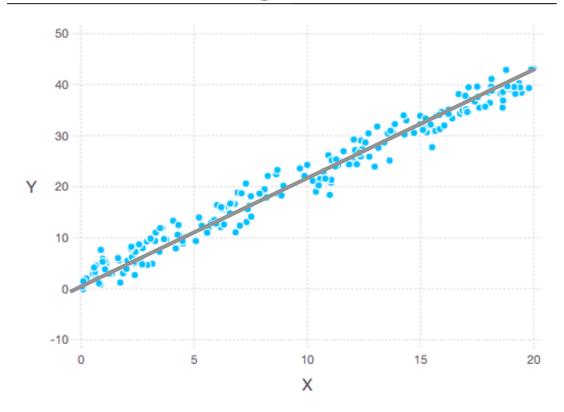


$$f(x) = 2x + 3$$

$$y = 2x + 3$$

$$y = 2x + 3$$

Linear Regression



Actual relation (assumed)

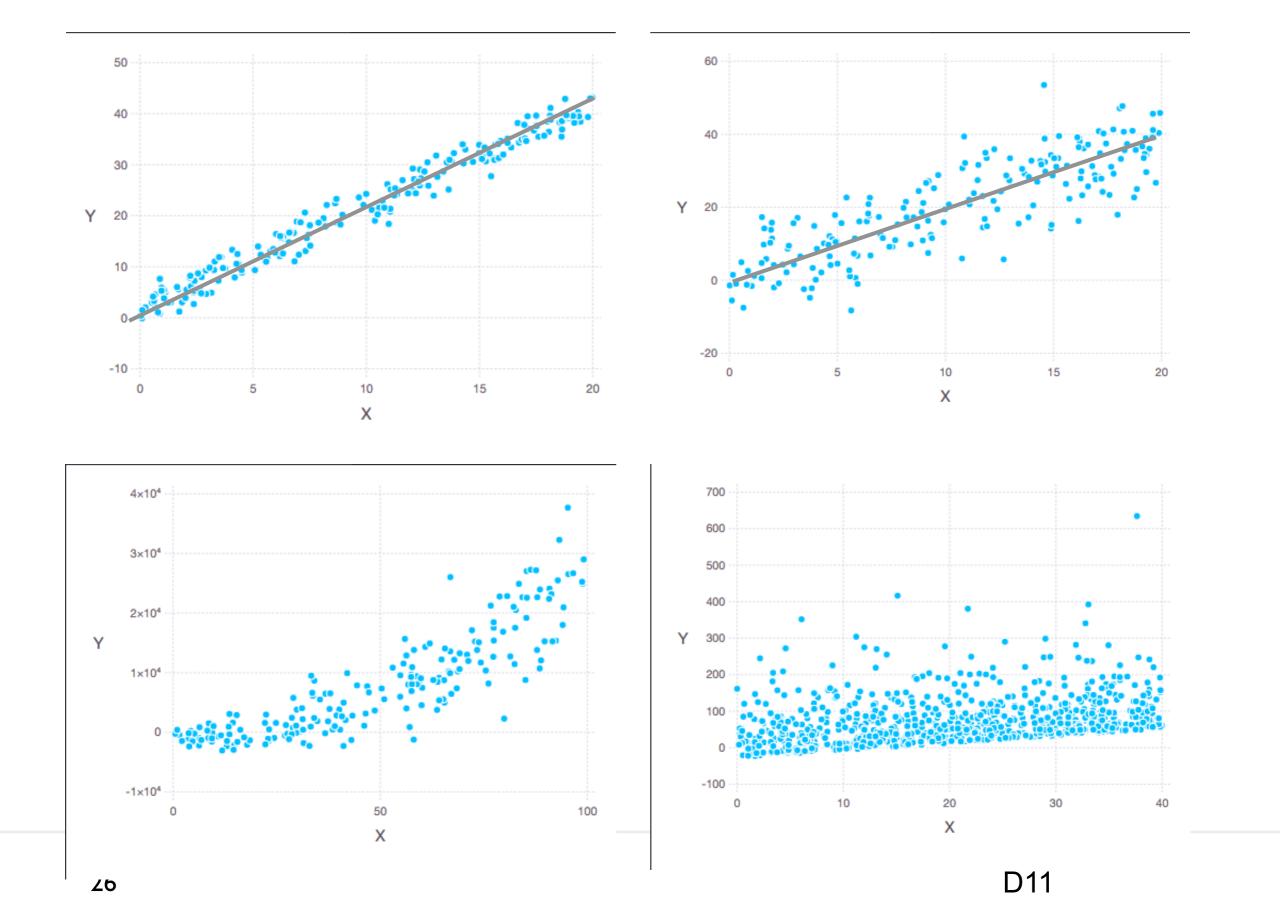
$$y = a + bx$$

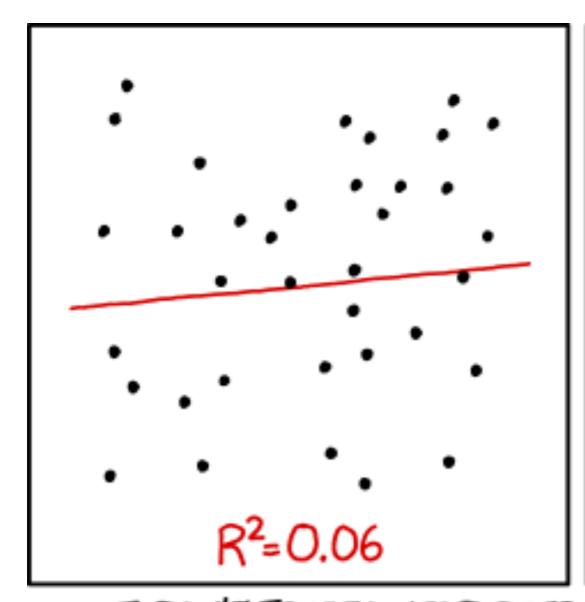
Compute linear line that fits the data best

$$\hat{y} = a + bx + e$$

e - error or residual

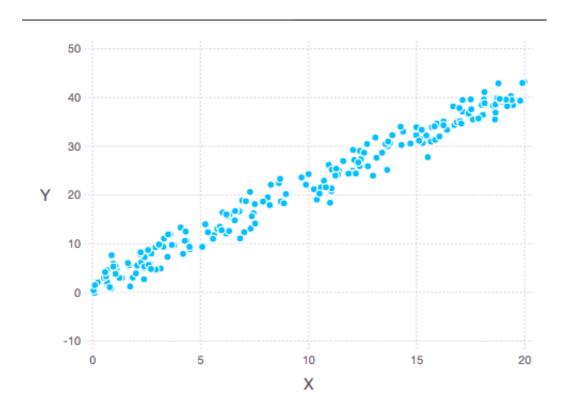
Goal is to minimize residual overall

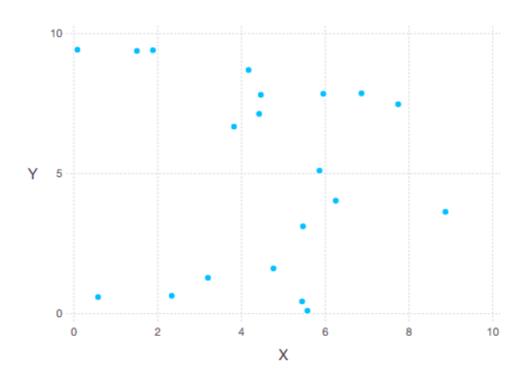




I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Are They Related?





Covariance

$$dx_i = x_i - \overline{x}$$

$$dy_i = y_i - \overline{y}$$

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} dx_i dy_i$$

DataFrame.cov

If x & y are related then they should vary from their means in a similar way

Values near zero indicate no relation

positive values - positive relation

negative values - negative relation

Effects of Scale

Cost USD	Pounds	Grams
9	3	1357.8
24	7	3168.2
38	10	4526

1 Pound = 452.6 grams

Changing the scale of units Does not change the relationship Does change magnitude of Covariance

Makes covariance hard to evaluate

```
cost_usd = pd.Series([9, 24, 38])
                                                            pounds.cov(cost_usd)
pounds = pd.Series([3, 7, 10])
grams = pd.Series([1357.8, 3168.2, 4526])
cost_usd.cov(pounds)
                                             50.8
cost_usd.cov(grams)
                                         23007.2
                                    1_634_429.1
cost_inr = cost_usd * 71.04
cost inr.cov(grams)
```

D11

50.8

	cost	pounds	grams
0	9	3	1357.8
I	24	7	3168.2
2	38	10	4526

data.cov()

	cost	pounds	grams
cost	210.333333	50.833333	2.300717E+04
pounds	50.833333	12.333333	5.582067E+03
grams	23007.166667	5582.066667	2.526443E+06

Units

$$dx_i = x_i - \overline{x}$$
 Lbs

$$dx_i = x_i - \overline{x}$$
 Lbs
$$dy_i = y_i - \overline{y}$$
 USD

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} dx_i dy_i$$

cost_usd.cov(pounds) == 50.8 lbs*USD

cost_usd.cov(grams) == 23007 grams*USD

Cost USD	Pounds	Grams
9	3	1357.8
24	7	3168.2
38	10	4526

Normalizing Data

Convert data to a common scale

Example - divide by maximum value

Cost USD	Pounds	Grams
9	3	1357.8
24	7	3168.2
38	10	4526

Cost	Amount
0.237	0.3
0.632	0.7
I	I

normalized_amount = pounds/pounds.max()
normalized_cost = cost_usd/cost_usd.max()

normalized_amount.cov(normalized_cost)

0.134

Pearson's Correlation - r

$$r = \frac{\text{cov}(X, Y)}{\sigma_x \sigma_y}$$

Normalized Covariance

Unitless

Range -1 to 1

1 = maximumly related

-1 - maximumly inversely related

0 - not related

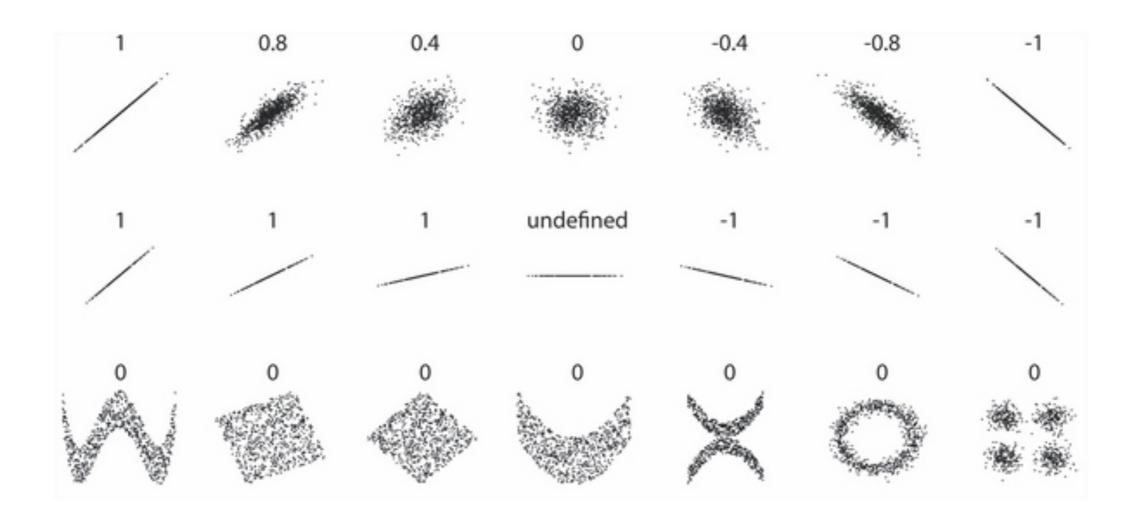
corr

Pearson's Correlation - r

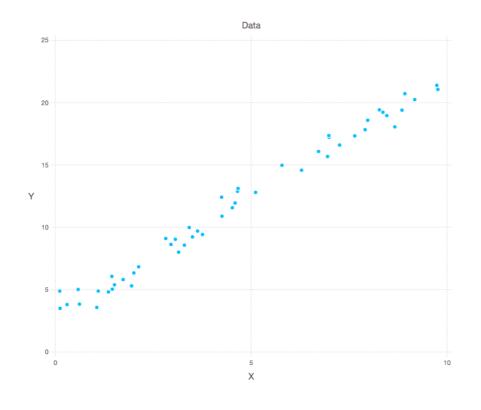
Cost USD	Pounds	Grams
9	3	1357.8
24	7	3168.2
38	10	4526

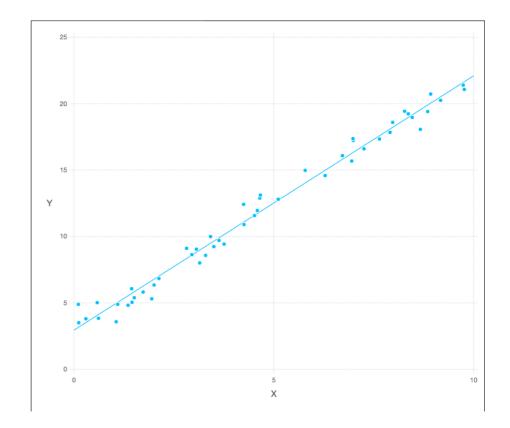
cost_usd.corr(pounds) cost_usd.corr(grams) 0.998

Pearson's Correlation r Value Examples



Regression Line





Pearson's Co x.corr(y) == 0.992

What the line that minimizes the amount of residuals

Ordinary least squares

$$b = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Standard way to fit line to data

$$b = \frac{cov(X,Y)}{var(X)}$$

$$a = \overline{y} - b\overline{x}$$

Computing Linear Regression - Some Data

```
import matplotlib.pyplot as plt
import numpy as np
```

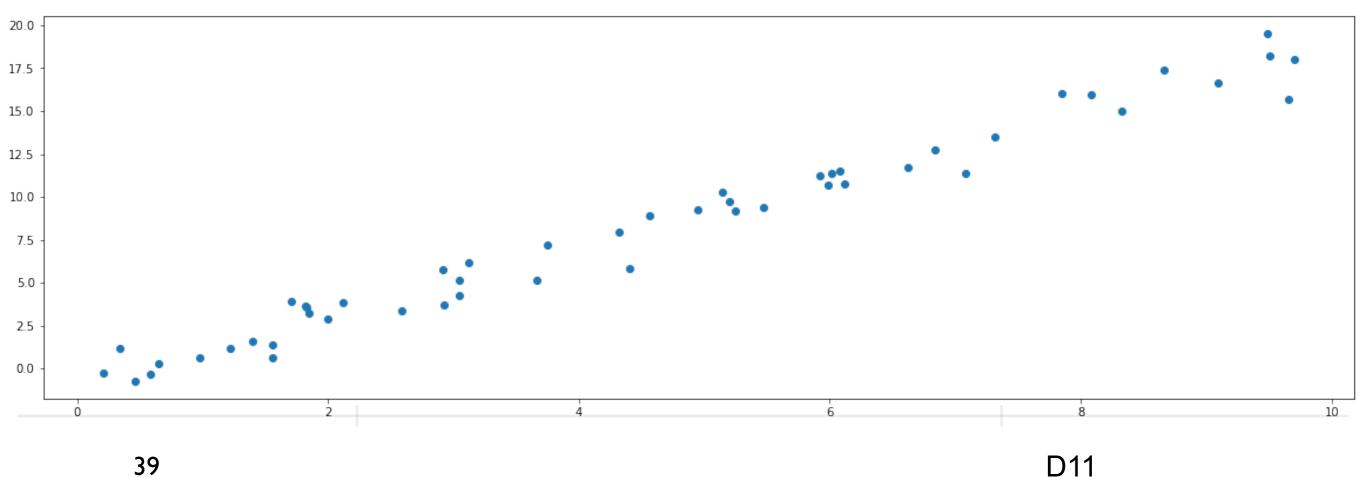
```
rng = np.random.RandomState(42)
x = 10 * rng.rand(50)
y = 2 * x - 1 + rng.randn(50)
plt.figure(figsize=(20,6))
plt.scatter(x, y);
```

39

y is our fake observed values

pd.Series(x).corr(pd.Series(y))

0.99



Training the Model

from sklearn.linear_model import LinearRegression

```
X = x[:,np.newaxis]
model = LinearRegression(fit_intercept=True)
model.fit(X, y)
```

//sklearn requires 2D for independent var

model.coef_[0]

1.977656600385311

model.intercept_

-0.9033107255311164

Regression line

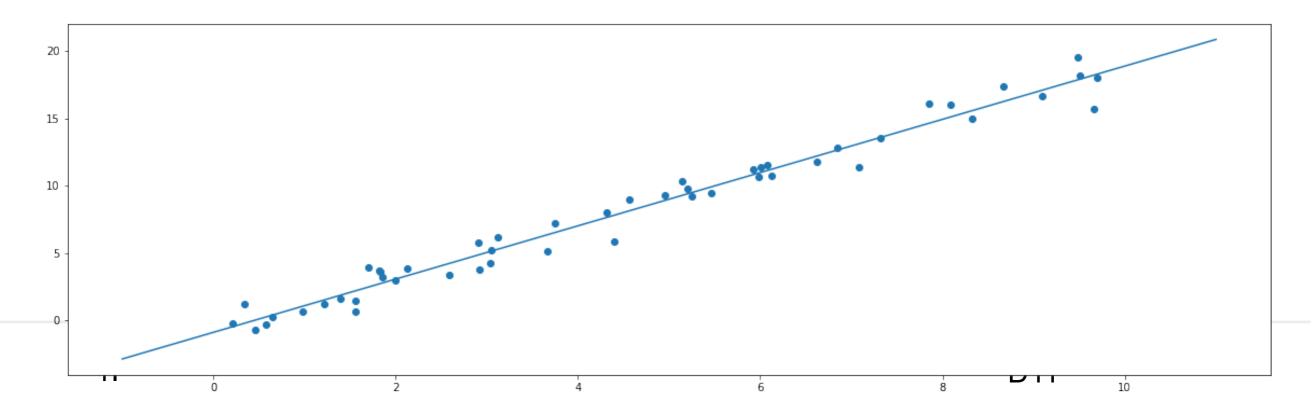
y = 1.977656600385311 *x - 0.9033107255311164

Regression Line

```
def regression_function(model):
    return lambda x: x * model.coef_[0] + model.intercept_
regression = regression_function(model)
regression(1)

plt.figure(figsize=(20,6))
plt.scatter(x, y);

xfit = np.linspace(-1,11, num=50)
plt.plot(xfit, regression(xfit))
```



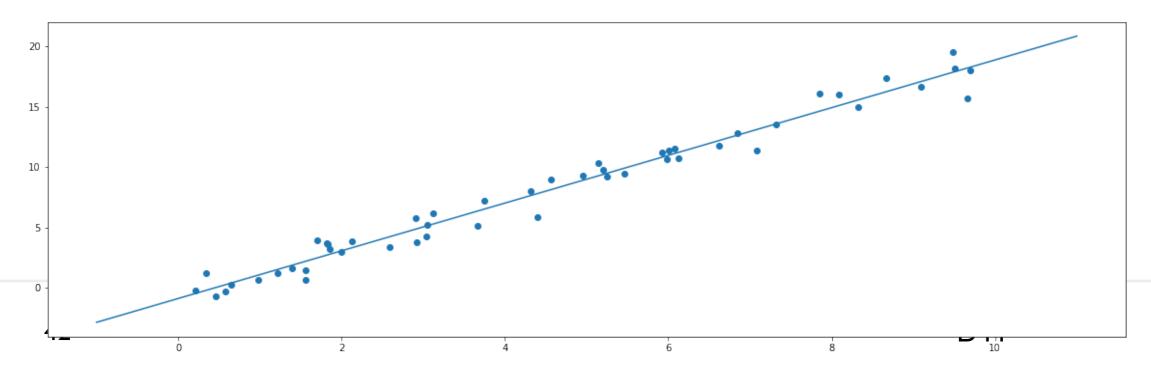
Regression Line

Linear regression is simple
Other models are not so simple
Let the model compute the regression line

```
xfit = np.linspace(-1,11, num=50) # 50 evenly spaced points from -1 to 11
Xfit = xfit[:, np.newaxis] # need 2D

yfit = model.predict(Xfit)

plt.figure(figsize=(20,6))
plt.scatter(x, y)
plt.plot(xfit, yfit);
```

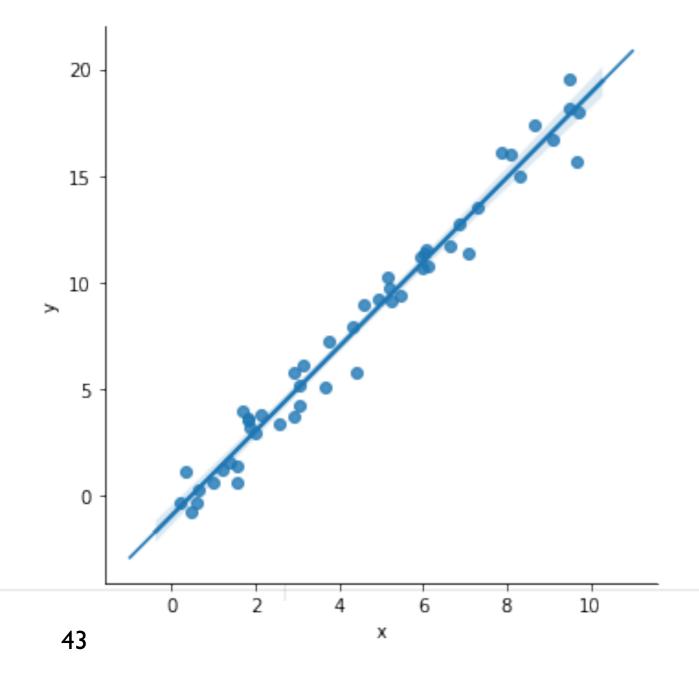


How does it compare to SNS Regression Line?

D11

import seaborn as sns

sns.Implot(x='x', y='y', data=pd.DataFrame({'x': x, 'y':y}))
plt.plot(xfit, yfit)



Is Linear Regression the Correct Model?

Scikit Learn Generalized Linear Models

Ordinary Least Squares

Ridge Regression

Lasso

Multi-task Lasso

Elastic Net

Multi-task Elastic Net

Least Angle Regression

LARS Lasso

Orthogonal Matching Pursuit (OMP)

Bayesian Regression

Logistic regression

Stochastic Gradient Descent - SGD

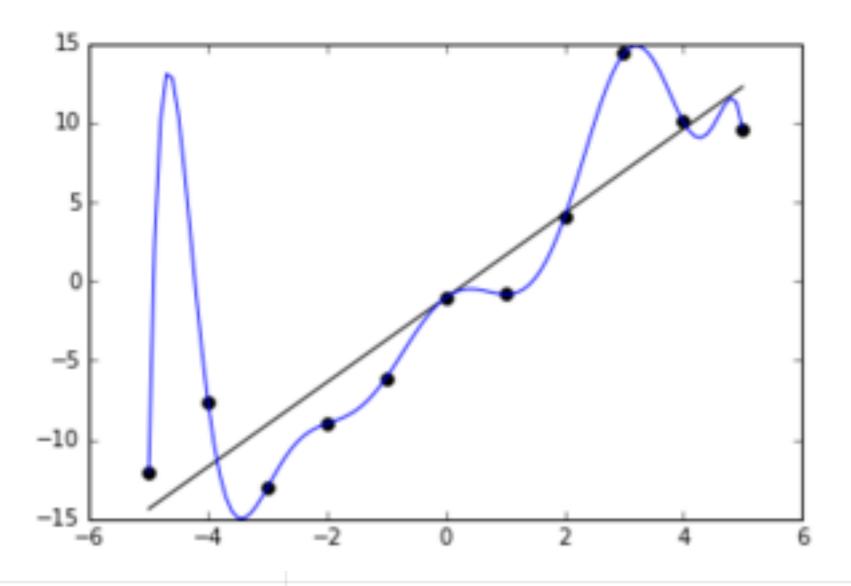
Huber Regression

Polynomial regression

Overfitting

Model describes random error or noise instead of the underlying relationship

Overfitting occurs when a model is excessively complex, Too many parameters relative to the number of observations



Is Linear Regression the Correct Model?

Residuals

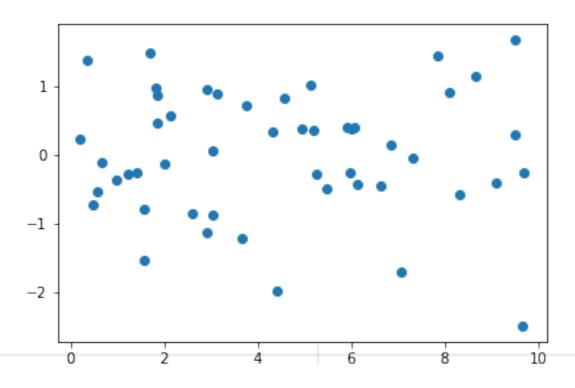
 \mathbb{R}^2

Residuals

Residual = Observed value - Predicted value

rng = np.random.RandomState(42)
x = 10 * rng.rand(50)
y = 2 * x - 1 + rng.randn(50) # Observed values
X = x[:,np.newaxis]

residual = y - model.predict(X)
plt.scatter(X,residual)



Residuals

Should be randomly distributed

Sum = 0

mean = 0

Coefficient of Determination R²

$$R^2 = 1 - \frac{var(\varepsilon)}{var(Y)}$$
 e = residuals
Y = observed data

Measure of how much the independent variable explains the variance of the data

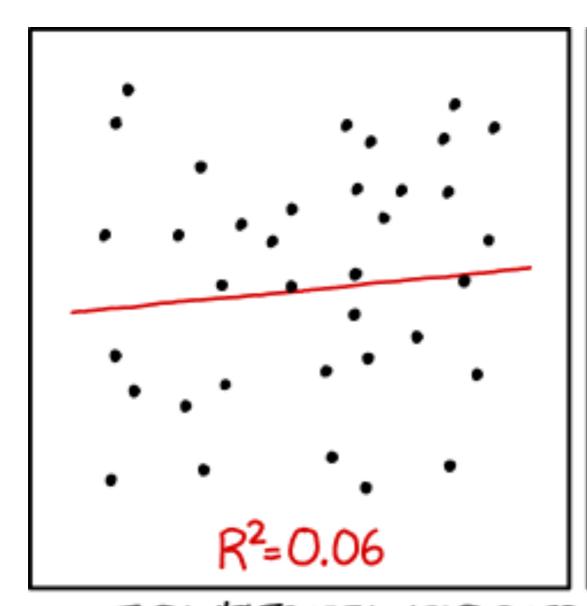
from sklearn.metrics import r2_score r2_score(y, model.predict(X))

0.9749140085676858

Simple Regression and R²

If only one independent variable

 $R^2 = r^2$ (Pearson's Correlation squared)



I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Multiple Linear Regression

Using multiple independent variables

Amazon's daily revenue depends on

Latency

Price

Steps needed to order

Page layout

Relevant suggestions

Search results

Font sizes

Color

Shipping costs

Two Independent Variable Example

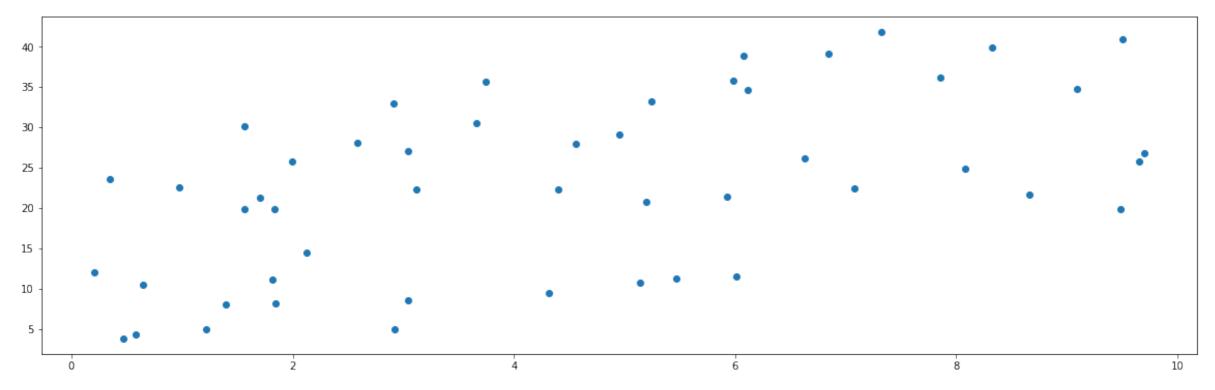
```
y = f(x, z) = 2*x + 3*z - 1

rng = np.random.RandomState(42)

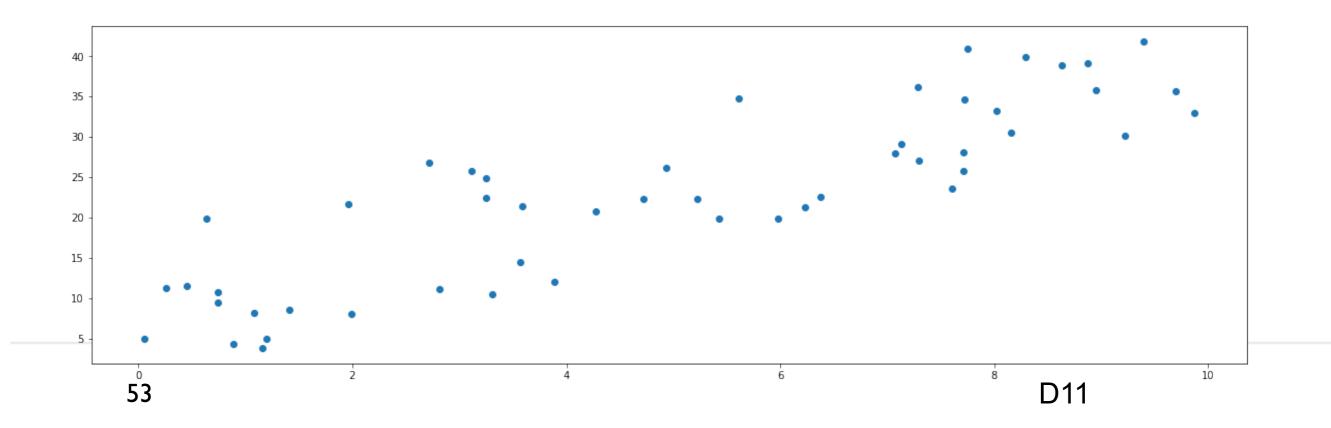
x = 10 * rng.rand(50)

z = 10 * rng.rand(50)

y = 2 * x + 3 * z - 1 + rng.randn(50) #faking data
```

plt.scatter(z, y)



Fitting the Model

```
from sklearn.linear_model import LinearRegression
model2 = LinearRegression(fit_intercept=True)
model2.fit(pd.DataFrame({'x':x,'z':z}), y)
```

model2.coef_

array([1.86706076, 2.96638451])

model.intercept_

-0.3049071881469345

Model

y = 1.86706076 * x + 2.96638451 * z - 0.3049071881469345

Actual

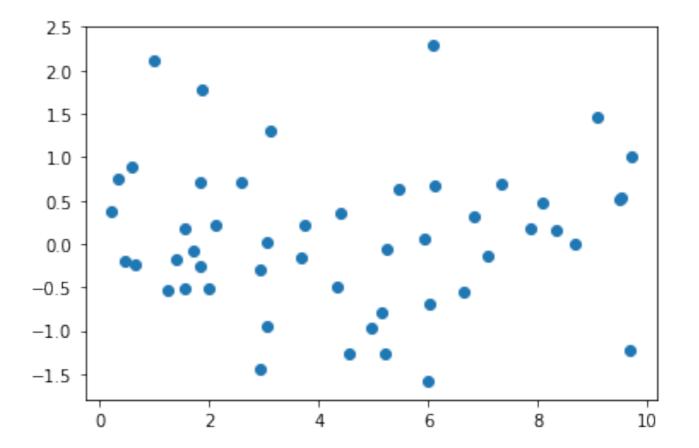
$$f(x, z) = 2^*x + 3^*z - 1$$

Residuals

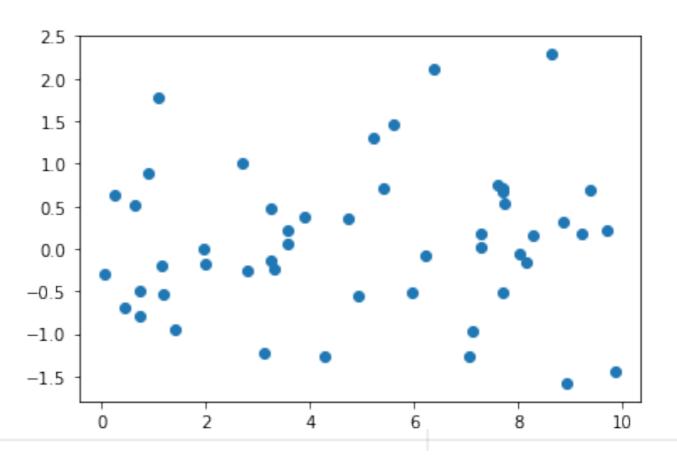
```
predicted = model2.predict(pd.DataFrame({'x':x,'z':z}))
residuals2 = y - predicted
residuals2.mean() # 0.0831037982077566
residuals2.sum() # 4.1551899103878
```

Residuals

plt.scatter(x,residuals2)



plt.scatter(z,residuals2)



56

Two Independent Variable Example

Model With 50 Data points

$$y = 1.86706076 * x + 2.96638451 * z - 0.3049071881469345$$

Actual

$$f(x, z) = 2^*x + 3^*z - 1$$

Model With 100 Data points

$$y = 1.96582747 * x + 3.07193114 * z - 1.0893899635499302$$

Model With 1000 Data points

$$y = 1.99662862 * x + 2.99969211 * z - 0.9689826659919589$$

R² - Coefficient of Multiple Determination

When have multiple independent variables R² has new name

Adding an other independent variable

Contributes to explain dependent variable

R² increases

Has nothing to do with dependent variable

R² increases

58 D²