CS 649 Big Data: Tools and Methods Fall Semester, 2021
 Doc 13 Statistics, Sampling, Bloom
 Feb 17, 2022

Copyright ©, All rights reserved. 2022 SDSU \& Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document.

Descriptive Statistics

mean
median
mode
variance
standard variation
quantiles

Descriptive Statistics

Arithmetic mean

```
mean(numbers) \(=\) sum(numbers)/length(numbers)
\[
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\]
```

median
Middle value of sorted list of numbers
If even number of values then mean of middle two values

$$
\operatorname{median}([1,7,3,8,5])==5.00
$$

mode
Value that appears the most in the data

Descriptive Statistics

Variance
Measures the spread in the numbers

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Standard Deviation, (SD, s, σ)
square root of the variance

Bessel's Correction

Normally only have a sample of data

Computing mean from sample introduces bias

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Bessel's correction for this bias
Divide by N-1

$$
s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

For large N this is not needed

But if underlying distribution is skewed or has long tails (kurtosis) other biases are introduced

Python functions Use Bessel's correction

data $=$ pd.Series $([2,4,4,4,5,5,7,9])$
data.var()
data.std()
data.mean()
data.median()
data.skew() 0.8184875533567997
pd.Series([1,2,3,4,5,10,20,50,100,1000]).skew()

PySpark

```
from pyspark.sql import SparkSession
import numpy as np
import pandas as ps
spark = SparkSession.builder.getOrCreate()
pdf = ps.DataFrame({'A': np.random.rand(500)})
psdf = spark.createDataFrame(pdf)
import pyspark.sql.functions as F
result_df = (
    psdf
    .select(F.mean('A').alias('mean'),
            F.stddev('A').alias('stddev'),
            F.var_pop('A'),
            F.var_samp('A').alias('variance'))
)
result_df.show()
```


Me \& Bill Gates

mean of mine \& Bill Gates net worth $=\$ 39.6$ B
variance 3144.2
standard deviation 51.6
mean of Zuckerberg \& Carlos Slim net worth $=\$ 52.3$ B
variance 11.5
standard deviation 3.39

Quantiles

q-quantiles

Cutpoints that divide the sorted data into q equal sized groups

4-quantile, quartile

pd.Series([1, 1, 4, 7, 7, 8, 10, 15, 17, 17, 25, 26]).quantile([0.25, 0.5, 0.75])
$\begin{array}{ll}0.25 & 6.25\end{array}$
$0.50 \quad 9.00$
$0.75 \quad 17.00$
10 dtype: float64

Red Bar shows middle two quartiles

White bar is median

2008-9 Academic Salary

salaries_url = "https://vincentarelbundock.github.io/Rdatasets/csv/carData/Salaries.csv" salaries = pd.read_csv(salaries_url, index_col=0)

	rank	discipline	yrs.since.phd	yrs.service	sex	salary
$\mathbf{1}$	Prof	B	19	18	Male	139750
$\mathbf{2}$	Prof	B	20	16	Male	173200
$\mathbf{3}$	AsstProf	B	4	3	Male	79750
$\mathbf{4}$	Prof	B	4.	45	39	Male
$\mathbf{5}$	Prof	B	115000			

A = Theoretical Department
B = Applied Department

Salary \& Sex

Salary \& Rank

Scatter Plot: Salary-Years Colored by Rank

Box Plots (Tukey Method)

Salary by Discipline

Salary by Rank

Beeswarm: Salary by Rank with Sex

Violin Plot: Salary by Rank

Distributions

Think in distributions not numbers

Poincare's Baker
France late 1800's
Bread hand made, regulated
Variation in weight of bread
Poincare suspected baker of cheating

Dwell Time \& A/B Testing of Websites
Dwell time - how long people spend on a web page

A/B testing - Showing two versions of a page to different people

How to tell if dwell time differs from between versions

Normal (Gaussian) Distribution

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \sigma^{2} \pi}} e^{-\frac{(z-\mu)^{2}}{2 \sigma^{2}}}
$$

Normal distribution is specified by
μ - mean, central point
σ - standard deviation

Populations \& Samples

Populations - all the items
Sample - set of representative items

Standard Error of sample $=\sigma_{x} /$ sqrt(n)
Standard Error of mean (SEM)

Measure	Sample statistic	Population parameter
Number of items	n	N
Mean	$\overline{\mathrm{x}}$	μ_{X}
Standard deviation	S_{x}	σ_{x}
Standard error	$\mathrm{S}_{\overline{\mathrm{x}}}$	

Standard deviation of the sample-mean estimate of a population mean

Note to decrease the SE by 2 we need to increase the sample size by factor of 4

Hypothesis Testing

H0 - Status quo
Null hypothesis
Poincare's Baker bread weight
is correct

People spend the same amount of time on version A and B of the website

H1 - What you are trying to prove Alternative hypothesis

Poincare's Baker bread weight is less than it should be

People spend the more time on version A than B of the website
alpha - probability that H_{1} is false
0.05
0.01
0.001

Sample N loaves of bread compute mean If probability of that mean occurring from properly manufactured bread is less than 0.05 we accept H_{1}

Types of Errors

False Positive (FP), type I error
Accepting H_{1} when it is not true Smaller alpha values reduce FP

False Negative (FN), type II error
Rejecting H_{1} when it is true Small alphas increase FN

Causation \& Correlation

Statistics

Does not prove that one thing is caused by another
Demonstrates that events are rare

If we accept H_{1} with alpha $=0.05$
5% chance that H_{1} is wrong

If 100 studies accept H_{1} with alpha $=0.05$
Expect about 5 of them are false positives

Bonus Slide

Center For Open Science

Reproduced 100 published Psychology studies
97 original studies had significant results $p<.05$

36 reproduced studies had significant results p < . 05

47 original effects sizes were in the 95% confidence interval of replication

Bonus Slide - 2

John P. A. loannidis Why Most Published Research Findings Are False PLoS Med. 2005 Aug; 2(8): e124.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327/
Dr. Russell Schierling
Why Can't We Reproduce Biomedical Research?
https://bit.ly/2X15u03

Replication crisis
https://en.wikipedia.org/wiki/Replication_crisis
primarily affecting parts of the social and life sciences in which scholars have found that the results of many scientific studies are difficult or impossible to replicate or reproduce on subsequent investigation

Sensitivity \& Specificity

Sensitivity	Correctly predicted H_{1} cases Total number of H_{1} cases$~$

Specificity
Correctly predicted non-H1 cases
Total number of non- H_{1} cases

Confidence Interval

Given a distribution and a p value

The interval that will contain 1-p of the values

95\% Confidence, p = 0.05

Poincare's Baker

How to check for Cheating Bakers

Weigh N samples of bread

Compute confidence interval of the mean of the sample

See if expected mean is in confidence interval

Poincare's Baker

```
Assume
    Bread weight supposed to be 1000g
    Standard deviation of 30g
    Baker makes bread 20g lighter
Random sample
    100 items
    Mean 1000-20
    Standard deviation 30
Compute the confidence interval for mean
Repeat }10\mathrm{ times
using Distributions
using HypothesisTests
d = Normal(980,30)
fake_sample = rand(d,100)
(a,b) = ci(OneSampleTTest(fake_sample),0.01)

\section*{Poincare's Baker}
```

Assume
Bread weight supposed to be 1000g
Standard deviation of 30g
Baker makes bread 10g lighter
Random sample
100 items
Mean 1000-10
Standard deviation 30
Compute the confidence interval for mean
Repeat }10\mathrm{ times
using Distributions
using HypothesisTests
d = Normal $(990,30)$
fake_sample = rand (d,100)
3 $\left.{ }^{59}, \mathrm{~b}, \mathrm{~b}\right)=\mathrm{ci}($ OneSampleTTest(fake_sample), 0.01)

```
10 Samples
a b
978.6995 .0
983.2998 .0
983.1998 .0
979.7997 .0
982.7999 .0
986.81000 .0
983.7999 .0
979.9995 .0
981.3997 .0
984.81002 .0

\section*{Central Limit Theorem}

Plot 10_000 random integers

Between 0 and 1

Bin the results


\section*{Central Limit Theorem}

Let
\[
\begin{aligned}
& X_{1}, X_{2}, \ldots, X_{N} \text { random sample } \\
& S_{N}=\left(X_{1}+\ldots+X_{N}\right) / N
\end{aligned}
\]

Then as N gets large \(\mathrm{S}_{\mathrm{N}}\) approximates the normal distribution


Compute the mean of 500 random numbers between 0 and 1

Repeat 5000 times

Plot the sums


\section*{Poincare's Baker - Part Two}

After being fined the baker still cheated
But always gave Poincare the heaviest loaf

Poincare still caught him!

\section*{Dwell Times on Web sites}

Look at Dwell data of website

Don't know the distribution of the dwell times

But daily mean of dwell times will be normally distributed

\section*{Dwell Data}

54000×2 DataFrames.DataFrame
\begin{tabular}{|c|c|c|}
\hline Row & I date & Dwell \\
\hline | 1 & | "2015-01-01T00:03:43Z" & 74 \\
\hline 12 & | "2015-01-01T00:32:12Z" & 109 \\
\hline 13 & | "2015-01-01T01:52:18Z" & 88 \\
\hline 14 & "2015-01-01T01:54:30Z" & 17 \\
\hline
\end{tabular}

\section*{Dwell Times}

Divide the range of data into 50 equal bins Plot the number of items in each bin


\section*{Exponential Distribution}


Log2(Y)

\section*{Log Scale - So Dwell Time is Exponential Dist.}
plot(dwell_times, x="Dwell", Geom.histogram(bincount = 50), Scale.y_log2)


\section*{Compute Daily Mean Dwell Time}
plot(daily_dwell, x="Dwell_mean", Geom.histogram(bincount=20))


Week Days

sample size \(=107\)
mean \(=90.2\)
std \(=3.7\)
Cl of mean \(\mathrm{p}=0.05\)
\((115,122)\)

Weekends

sample size \(=107\)
mean \(=118.3\)
std \(=11.0\)
CI of mean \(p=0.05\)
(89.5 ,90.9)

\section*{Sampling - Motivation}

How to find mean and median of 1 Billion values?

Web browser wants to warn user when they request a known malicious website
Could be millions of malicious websites
Don't want to check server for each URL

Web Crawler
Visit page A
Extract all links from page A
Repeat process on all links from page A
How to know if you have already visited a page?
Google indexes \(\sim 45\) Billion web pages

\section*{Populations \& Samples}

Populations - all the items
Sample - set of representative items

Standard Error of sample \(=\sigma_{x} /\) sqrt(n)
Standard Error of mean (SEM)
\begin{tabular}{|c|c|c|}
\hline Measure & \begin{tabular}{c} 
Sample \\
statistic
\end{tabular} & \begin{tabular}{c} 
Population \\
parameter
\end{tabular} \\
\hline Number of items & n & N \\
\hline Mean & \(\overline{\mathrm{x}}\) & \(\mu_{X}\) \\
\hline Standard deviation & \(S_{x}\) & \(\sigma_{x}\) \\
\hline Standard error & \(\mathrm{S}_{\bar{x}}\) & \\
\hline
\end{tabular}

Standard deviation of the sample-mean estimate of a population mean

Note to decrease the SE by 2 we need to increase the sample size by factor of 4

\section*{Sampling}

100,000 data points
Compute the average

Take random sample of 1000 compute average How close will sample average be to actual average?

Let \(s=\) average of the sample
\(\mathrm{n}=\) sample size \(=1000\)

Standard Error \(=\) standard deviation \(=\mathrm{s} / \mathrm{sqrt}(\mathrm{n})\)

\section*{Sampling}

Let \(s=\) average of the sample
\(\mathrm{n}=\) sample size \(=1000\)

Standard Error = standard deviation = s/sqrt(n)

Confidence Interval (s - z*s/sqrt(n), s + z*s/sqrt(n) )

Width of confidence interval \(=s+z^{*} s / s q r t(n)-\left(s-z^{*} s / s q r t(n)\right)\)
\[
\begin{aligned}
& =s+z^{*} s / s q r t(n)-s+z^{*} s / s q r t(n) \\
& =z^{*} s / \operatorname{sqrt}(n)+z^{*} s / \operatorname{sqrt}(n) \\
& =2 z^{*} s / \operatorname{sqrt}(n)
\end{aligned}
\]

\section*{Sampling}

Confidence Interval (s-z*s/sqrt(n), s + z*s/sqrt(n) )

\section*{Experiment}

100,000 random integer between 0 and 1000
Sample size 1,000

Sample mean \((s)=532.33\)

Confidence Interval at \(95 \%=(499.3,565.3)\)

Actual mean \(=501.4\)

\section*{What if we want sample to be within \(10 ?\)}
```

Width of confidence interval = W = 2z*s/sqrt(n)

$$
\begin{aligned}
\mathrm{n} & =4 \mathrm{z}^{* 2} \mathrm{~s}^{2} / \mathrm{W}^{2} \\
& =4 * 1.96^{2} * 501.42 / 10^{2} \\
& \approx 39000
\end{aligned}
$$

```

Mean of samples of size 39000
```

502.37
500.795
503.108
Population mean
501.4
502.488
4 9 9 . 3 5 1
4 9 9 . 9 0 7
500.791
501.248
501.814
501.707

```
5504.143
    \(50 \cap 505\)

\section*{Bloom Filter}

\section*{Burton Bloom - 1970}

Space-efficient probabilistic data structure

Test whether an element is in a set

Bloom filter does not contain the elements in the set

False positive matches are possible
Possibly in set

False negatives are not possible
Definitely not in set

\section*{Types of Errors}

False Positive (FP), type I error
Accepting a statement as true when it is not true

False Negative (FN), type II error
Accepting a statement as false when it is true

\section*{Bloom Filter - How it works}

\author{
Empty Bloom filter
}
m bits all 0
k different hash functions
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Bloom Filter - How it works \\ \[
\begin{aligned}
& \mathrm{m}=18 \\
& \mathrm{k}=3
\end{aligned}
\]}

Insert x


\section*{Bloom Filter - How it works}

Contains y ?
\[
\begin{aligned}
& \mathrm{m}=18 \\
& \mathrm{k}=3
\end{aligned}
\]
\(\{x\}\)


\section*{Bloom Filter - How it works}

Contains \(x\) ?
\[
\begin{aligned}
& \mathrm{m}=18 \\
& \mathrm{k}=3
\end{aligned}
\]
\[
\{x\}
\]


\section*{Bloom Filter - How it works \\ \[
\begin{aligned}
& \mathrm{m}=18 \\
& \mathrm{k}=3
\end{aligned}
\] \\ Insert z \\ \(\{x\}\)}


\section*{Bloom Filter - How it works}

Contains \(y\) ?
\[
\begin{aligned}
& \mathrm{m}=18 \\
& \mathrm{k}=3
\end{aligned}
\]
\(\{x, z\}\)


Two hash functions had same value as \(x\)
One hash function had same value of \(z\)

\section*{Bloom Filter - How it works}

\section*{Larger m}

Decreases false positives
Increases table size - fewer collisions

Larger k
Decreases false positives up to a point
But fills table faster

\section*{Bloom filter for Scala}
https://github.com/alexandrnikitin/bloom-filter-scala
```

// Create a Bloom filter
val expectedElements = 1000000
val falsePositiveRate = 0.1
val bf = BloomFilter[String](expectedElements, falsePositiveRate)
// Put an element
bf.add(element)
// Check whether an element in a set
bf.mightContain(element)
// Dispose the instance
bf.dispose()

```

\section*{Bloom Filter - Sample Uses}

Akamai's web servers
Some pages are only accessed once - One-hit-wonders
Only cache web page after second time it is accessed
Use bloom filter to determine if page has been seen before
Google BigTable, Apache HBase and Apache Cassandra, and Postgresql
Use Bloom filters to see if rows or columns exist
Avoid costly disk access on nonexistent rows

Google Chrome web browser
Use Bloom filter to identify malicious URLs
If filter contains the url then check server to make sure

Medium
Uses Bloom filters to avoid recommending articles a user has previously read

\section*{Heavy Hitters Problem}

Computing popular products
Given the page views on Amazon which products are viewed the most?
Computing frequent search queries
Given the stream of Google searches what are the popular searches
3.5 billion searches per day

View Tweets
How often are trees viewed? What the most popular tweets?

Heavy Network flows
Given packet count source and destination through switch
Where is the traffic the heaviest?
Cisco Nexus 9500-172.8 Tbps
Useful to detect DoS attacks

Volatile Stocks
Given stream of stock transactions which stocks are Traded the most
Change prices the most

\section*{Count-Min Sketch}

Graham Cormode and S. Muthu Muthukrishnan - 2003

Consume a stream of events
Count the frequency of the different types of events in the stream Does not store the events

Counts for each event type
Estimate of actual count
Within given range of actual count with given probability

\section*{Count-Min Sketch - How it works}

Initial count-min sketch
w- columns
d-rows
d different hash functions
All entries integers \(=0\)
w determines
Interval length containing actual count
d determines
Probability that actual count is in interval
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Count-Min Sketch - How it works}

\section*{Event x}


\section*{Count-Min Sketch - How it works}

\section*{Event y}


\section*{Count-Min Sketch - How it works}

\section*{Event x}


\section*{Count-Min Sketch - How it works}

Event z


\section*{Count-Min Sketch - How it works}

How often did x occur?
Look at counts for \(x\) in each row Return the minimum count
```

