
CS 635 Advanced OO Design and Programming
Spring Semester, 2016

Assignment 2
© 2016, All Rights Reserved, SDSU & Roger Whitney

 San Diego State University -- This page last updated 2/12/16

Assignment 2
Binary Search Tree Revisited

The goal of this assignment is to improve on your assignment one and implement Iterator, null
object, decorator and strategy patterns.

Due March 1

1. Make sure that you have a copy of your unit tests from assignment 1. When you are done
with this assignment determine how good the tests were. That is after making the changes
required in this assignment how confident are you that your code works after running the
tests. Did you have to write new tests as you refactored your code?

2. Refactor your tree code to use standard names for methods, remove helper methods on
the Tree that deal with nodes, and any other clean up you feel is needed in your code. You
might find the refactorings rename and move useful here. In Eclipse these refactorings can
be found in the Refactoring menu.

3. A Binary Search Tree is a collection. Determine the correct location in your language’s col-
lection class hierarchy. Find all methods that you need to implement in-order to add your
class in the language’s collection class hierarchy.

4. Make the parent class of your tree class the parent determined in problem 3. Rename your
existing methods to conform to the collection classes standards. You may need to stub
some methods to satisfy the parent class's constraints. Note we will only be interested in
implementing a few of these methods. You do not have to implement all the methods in the
parent class. We will need at least the add method, toArray and the toString method. As in
assignment 1 don't use arrays or other collection classes to implement your tree.

5. Use the strategy pattern to allow you determine how the tree will be ordered when a tree
object is created.

6. Implement an iterator for your Tree class. Don't covert your tree to an array or other collec-
tion to implement your iterator. You can implement either an internal or external Iterator.

7. Use the null object pattern to represent head and leaf nodes in the tree. Can you remove
any null checks?

8. Implement two separate and independent decorators for Java’s Iterator. The first decorator
only return Strings that start with a vowel. The constructor for the decorator needs one ar-
gument of type Iterator<String>. The second decorator also only works on Strings. The
second iterator capitalizes all the strings it returns in its next() method.

9. Write unit tests for the code you write for this assignment.

 Grading

Item Points
Working Code 10
Unit Tests 10
Proper implementation of Patterns 10 per Pattern (40 points total)
Quality of Code 10
Proper Parent Class & Method names 10
Written Answers to questions 1,7 5

Turning in your Assignment

The assignment is given as a series of steps. Turn in the code as it is when you have finished
all steps. Do not turn in multiple copies of the same class.

