
CS 635 Advanced OO Design and Programming
Spring Semester, 2014

Assignment 2
© 2014, All Rights Reserved, SDSU & Roger Whitney

 San Diego State University -- This page last updated 2/18/14

Assignment 2
Min-Heap Revisited

The goal of this assignment is to improve on your assignment one and implement Iterator, null
object, decorator and strategy patterns.

Due Mar 6

1. Review your units tests for adding elements to the Min Heap from assignment 1. Make sure
that the tests adequately test adding elements to the heap. Record those tests. When you
are done with the assignment determine how good the tests were. That after making the
changes required in this assignment you were confident that worked after running the tests.
Did you have add to or modify your tests?

2. Refactor your tree code to use standard names for methods, remove helper methods on
the heap that deal with heap nodes, and any other clean up you feel is needed in your
code. You might find the refactorings rename and move useful here. In Eclipse these refac-
torings can be found in the Refactoring menu.

3. The heap class is a collection. Determine the correct location in your language’s collection
class hierarchy. Find all methods that you need to implement in-order to add your class in
the language’s collection class hierarchy. (C++ people get a pass on this problem as STL is
painful to subclass.)

4. Make the parent class of your heap the parent determined in problem 1. Rename your ex-
isting methods to conform to the collection classes standards. One may need to stub some
methods to satisfy the parent class's constraints. Note we will only be interested in imple-
menting a few of these methods. You do not have to implement all the methods in the par-
ent class. We will need at least the add method, toArray and the toString method. As in as-
signment 1 don't use arrays or other collection classes to implement your heap.

5. Use the strategy pattern to allow your heap to be either a min heap or a max heap.

6. Implement an iterator for your heap. Using an in-order traversal will be easier than pre-
order or post-order. Don't covert your heap to an array or other collection to implement your
iterator.

7. Use the null object pattern to remove null checks when finding the height of the heap. Can
you remove other null checks?

8. Implement what we will for now will call IngFilter. Using Java syntax the class will have the
methods given below. People using other languages may need to implement different
methods to conform to their language's conventions.

IngFilter(Iterator input) - constructor

boolean hasNext() - returns true if the iteration has more elements that end in "ing".

next() - returns the next element in the iteration that ends in "ing".

9. Create a decorator class IngHeapDecorator that decorates your new Heap class. The
decorator modifies the toString, toArray and iterator methods to return just elements ending
in "ing. Does this make sense as a decorator?

 Grading

Item Points
Working Code 10
Unit Tests 10
Proper implementation of Patterns 14 per Pattern (70 points total)
Quality of Code 10
Proper Parent Class & Method names 10

Turning in your Assignment

Turn in a hard copy of your assignment.

