CS 635 Advanced OO Design and Programming
Spring Semester, 2013
Assignment 2
© 2013, All Rights Reserved, SDSU & Roger Whitney
San Diego State University -- This page last updated 1/31/13

Assignment 2
Due Feb 14

The goal of this assignment is to improve on your assignment one and implement Iterator, visi-
tor and strategy patterns.

1.

2.

Modify your Trie classes to use standard collection method names in your language.
Implement an iterator on your Trie class to iterate through all the words in the trie.

Use the iterator to select all words in the Trie that contains the letters "ck" per assignment
1.

Implement a toString() method on your Trie class that returns a string representation of the
Trie object. If you are not using Java use the name appropriate to your language.

Implement the Visitor pattern on your Trie. The visitor pattern uses different types of ob-
jects. While a bit unnatural use three types of node in your Trie. First add a null node at the
end path in the Trie. Second use a word node and a non-word node. A word node indicates
that the character sequence to that node in the trie is a word. A non-word node indicates
that the character sequence through that node is not a word. Be careful with the Visitor pat-
tern. Students often take shortcuts in the pattern which results in them not implementing
the Visitor pattern.

Implement two different visitors for your Trie. The first one collects all the words in the Trie.
The second visitor collects all the words in the Trie that contain the letters "ck".

Implement a third visitor for your Trie. This visitor accepts a strategy object that the the visi-
tor uses to determine which words in the the trie to collect. Implement two strategy objects.
One that you can use to find all words that contain more than two vowels. Another one that
you can use to find all words that contain the letters "th" without any other letters between
them.

Write unit test for the functionality above. You might find it instructive to write tests for your
current classes and refactor and modify your existing code to meet the above require-
ments.

If you are not using a source control system you might consider doing so now. If you use
Eclipse try mercurial. The Eclipse plugin can be found at

https://bitbucket.org/mercurialeclipse/main/wiki/Home.


https://bitbucket.org/mercurialeclipse/main/wiki/Home
https://bitbucket.org/mercurialeclipse/main/wiki/Home

Grading

Percent of Grade

Working Code 15%
Unit Tests 15%
Quality of Code 20%

Proper implementation of 50%
Patterns

What to Turn in
Turn in hard copy of your code.

Late Policy
An assignment turned in 1-7 days late, will lose 3% of the total value of the assignment per day
late. The eight day late the penalty will be 40% of the assignment, the ninth day late the pen-
alty will be 60%, after the ninth day late the penalty will be 90%. Once a solution to an assign-
ment has been posted or discussed in class, the assignment will no longer be accepted. Late
penalties are always rounded up to the next integer value.

Comments

Please no ascii based menu systems to run the code. Use Xunit tests instead. There are lot of
patterns in this assignment. More than one should use in normal code. Also some of the pat-
terns are excessive for the situation. The goal is to give you some experience implementing
patterns, so we are using more than one would normally use.



