
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2012
Doc 6 Strategy & Visitor

Feb 7, 2012

Copyright ©, All rights reserved. 2012 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

1Tuesday, February 7, 12

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Design Patterns: Elements of Resuable Object-Oriented Software,
Gamma, Helm, Johnson, Vlissides, Addison-Wesley, 1995, pp. 175-184, 315-324

Design Patterns: Elements of Resuable Object-Oriented Software, Gamma, Helm,
Johnson, Vlissides, Addison-Wesley, 1995, pp. 331-344

Magritte Meta-Described Web Application Development, Lukas Renggli, June 2006,
Master Thesis Universität Bern, http://www.iam.unibe.ch/~scg/Archive/Diploma/
Reng06a.pdf

Refactoring to Patterns, Kerievsky, 2005

Photographs used with permission from www.istockphoto.com

2Tuesday, February 7, 12

Favor
Composition

over
Inheritance

3

3Tuesday, February 7, 12

4

Sorted
Reverse Sorted
Random

Orderable List

4Tuesday, February 7, 12

OrderableList

SortedList ReverseList RandomList

5

5Tuesday, February 7, 12

6

One size does not fit all

6Tuesday, February 7, 12

7

Order
Sorted
Reverse Sorted
Random

Threads
Synchronized
Unsynchronized

Mutability
Mutable
Non-mutable

Issue 1 - Orthogonal Features

7Tuesday, February 7, 12

8

OrderableList

SortedList ReverseList RandomList

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

Mutable NonMutable

Synch
Not
Synch

Synch
Not
Synch

8Tuesday, February 7, 12

9

Issue 2 - Flexibility

9Tuesday, February 7, 12

10

OrderableList x = new OrderableList();
x.makeSorted();
x.add(foo);
x.add(bar):
x.makeRandom();

Change behavior at runtime

10Tuesday, February 7, 12

11

Configure objects behavior at runtime

11Tuesday, February 7, 12

12

Algorithm

Sorted Random ReverseSorted

class OrderableList {
 private Object[] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
 orderer = x;
 }

 public void add(Object element) {
 elements = ordered.add(elements,element);
 }

Strategy Pattern

12Tuesday, February 7, 12

Structure

13

contextInterface()

Context

algorithmInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB

13Tuesday, February 7, 12

14

The algorithm is the operation

Context contains the data

How does this work?

14Tuesday, February 7, 12

15

Prime Directive
Data + Operations

15Tuesday, February 7, 12

16

How does Strategy Get the Data?

Pass needed data as parameters in strategy method

Give strategy object reference to context
Strategy extracts needed data from context

16Tuesday, February 7, 12

17

Example - Java Layout Manager

import java.awt.*;
class FlowExample extends Frame {

 public FlowExample(int width, int height) {
 setTitle("Flow Example");
 setSize(width, height);
 setLayout(new FlowLayout(FlowLayout.LEFT));

 for (int label = 1; label < 10; label++)
 add(new Button(String.valueOf(label)));
 show();
 }

 public static void main(String args[]) {
 new FlowExample(175, 100);
 new FlowExample(175, 100);
 }
}

17Tuesday, February 7, 12

Example - Smalltalk Sort blocks

18

| list |
list := #(1 6 2 3 9 5) asSortedCollection.
Transcript
 print: list;
 cr.
list sortBlock: [:x :y | x > y].
Transcript
 print: list;
 cr;
 flush.

18Tuesday, February 7, 12

Costs

19

Clients must be aware of different Strategies

Communication overhead between Strategy and Context

Increase number of objects

19Tuesday, February 7, 12

Benefits

20

Alternative to subclassing of Context

Eliminates conditional statements

Replace in Context code like:

 switch (flag) {
 case A: doA(); break;
 case B: doB(); break;
 case C: doC(); break;
 }

 With code like:

 strategy.do();

Gives a choice of implementations

20Tuesday, February 7, 12

Refactoring: Replace Conditional Logic with
Strategy

21

Conditional logic in a method controls which of
several variants of a calculation are executed

Create a Strategy for each variant and make the
method delegate the calculation to a Strategy instance

so

21Tuesday, February 7, 12

Replace Conditional Logic with Strategy

22

class Foo {
public void bar() {

switch (flag) {
case A: doA(); break;
case B: doB(); break;
case C: doC(); break;

}
}

}

class Foo {
private strategy;
public void bar() {

strategy.do(data);
}

}

22Tuesday, February 7, 12

See Refactoring to Patterns, Kerievsky, 2005, pp 129-143 for detail steps

23

Visitor Pattern

23Tuesday, February 7, 12

Visitor

24

Intent
Represent an operation to be performed on the
elements of an object structure

Visitor lets you define a new operation without
changing the classes of the elements on which it
operates

24Tuesday, February 7, 12

Tree Example

25

class Node { ... }

class BinaryTreeNode extends Node {...}

class BinaryTreeLeaf extends Node {...}

25Tuesday, February 7, 12

Tree Example

26

class BinaryTreeNode extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeNode(this);
 }
}

class BinaryTreeLeaf extends Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visitBinaryTreeLeaf(this);
 }
}

abstract class Visitor {
 abstract void visitBinaryTreeNode(BinaryTreeNode);
 abstract void visitBinaryTreeLeaf(BinaryTreeLeaf);
}

class HTMLPrintVisitor extends Visitor {
 public void visitBinaryTreeNode(BinaryTreeNode x) {
 HTML print code here
 }
 public void visitBinaryTreeLeaf(BinaryTreeLeaf x){ ...}
}

Put operations into separate object - a visitor

Pass the visitor to each element in the structure

The element then activates the visitor

Visitor performs its operation on the element

Each visitX method only deals with on type of element

26Tuesday, February 7, 12

Tree Example

27

Visitor

27Tuesday, February 7, 12

Double Dispatch

28

Note that a visit to one node requires two method calls

 Node example = new BinaryTreeLeaf();
 Visitor traveler = new HTMLPrintVisitor();
 example.accept(traveler);

example.accept() calls aVisitor.visitBinaryTreeNode(this);

The first method selects the correct method in the Visitor class

The second method selects the correct Visitor class

28Tuesday, February 7, 12

Issue - Who does the traversal?

29

Visitor

Elements in the Structure

Iterator

29Tuesday, February 7, 12

What is Wrong with This?

30

class Node {
 public void accept(Visitor aVisitor) {
 aVisitor.visit(this);
 }
}

abstract class Visitor {
 abstract void visit(Node);
}

class HTMLPrintVisitor extends Visitor {
 public void visit(Node x) {
 if x is BinaryTreeNode {
 blah
 }
 else if x is BinaryTreeLeaf {
 more blah
 }
 }
}

30Tuesday, February 7, 12

When to Use the Visitor

31

Have many classes of objects with differing interfaces, and you want to perform
operations on these objects that depend on their concrete classes

When many distinct and unrelated operations need to be preformed on objects in
an object structure and you want to avoid cluttering the classes with these
operations

When the classes defining the structure rarely change, but you often want to
define new operations over the structure

31Tuesday, February 7, 12

Consequences

32

Visitors makes adding new operations easier

Visitors gathers related operations, separates
unrelated ones

Adding new ConcreteElement classes is hard

Visiting across class hierarchies

Accumulating state

Breaking encapsulation

32Tuesday, February 7, 12

Avoiding the accept() method

33

Visitor pattern requires elements to have an accept method

Sometimes this is not possible

 You don’t have the source for the elements

Aspect Oriented Programming

AspectJ eleminates the need for an accept method in aspect oriented Java

AspectS provides a similar process for Smalltalk

33Tuesday, February 7, 12

Why not use one of this instead of the Visitor?

34

package example;
class BinaryTree {
 public Iterator iterator() {...}
 ...
}

class DoFoo {
 Iterator elements;
 public DoFoo(BinaryTree tree) {
 elements = tree.iterator();
 }

 public void doIt() {
 while (elements.hasNext()) {
 Integer next = (Integer)
elements.next();
 do foo here with next
 }
}

34Tuesday, February 7, 12

Magritte

35

Web applications have data (domain models)

We need to
 Display the data
 Enter the data
 Validate data
 Store Data

35Tuesday, February 7, 12

Magritte

36

For each field in a domain model (class) provide a description

Description contains
 Data type Display string
 Field name Constraints

descriptionFirstName
 ^ (MAStringDescription auto: 'firstName' label: 'First Name' priority: 20)
 beRequired;
 yourself.

descriptionBirthday
 ^ (MADateDescription auto: 'birthday' label: 'Birthday' priority: 70)
 between:(Date year: 1900) and:Datetoday;
 yourself

36Tuesday, February 7, 12

Magritte

37

Each domain model has a collection of descriptions

Different visitors are used to

 Generate html to display data

 Generate form to enter the data

 Validate data from form

 Save data in database

37Tuesday, February 7, 12

Sample Page

38

 editor := (Person new asComponent)
 addValidatedSwitch;
 yourself.
 result := self call: editor.

38Tuesday, February 7, 12

http://127.0.0.1:8008/personeditor
http://127.0.0.1:8008/personeditor

Refactoring: Move Accumulation to Visitor

39

A method accumulates information from heterogenous classes

Move the accumulation task to a Visitor that can visit each class to
accumulate the information

so

39Tuesday, February 7, 12

See Refactoring to Patterns, Kerievsky, 2005, pp 320-338 for details

