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One size does not fit all
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Issue 1 - Orthogonal Features
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Issue 2 - Flexibility
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OrderableList x = new OrderableList();
x.makeSorted();
x.add(foo);
x.add(bar):
x.makeRandom(); 

Change behavior at runtime
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Configure objects behavior at runtime
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Algorithm

Sorted Random ReverseSorted

class OrderableList {
 private Object[ ] elements;
 private Algorithm orderer;

 public OrderableList(Algorithm x) {
  orderer = x;
 }

   public void add(Object element) {
      elements = ordered.add(elements,element);
   }

Strategy Pattern
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Structure
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contextInterface()

Context

algorithmInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB
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The algorithm is the operation

Context contains the data

How does this work?
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Prime Directive
Data + Operations
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How does Strategy Get the Data?

Pass needed data as parameters in strategy method

Give strategy object reference to context
Strategy extracts needed data from context 
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Example - Java Layout Manager

import java.awt.*;
class  FlowExample  extends Frame  {
   
 public FlowExample( int  width, int height ) {
  setTitle( "Flow Example" );
  setSize( width, height );
  setLayout( new FlowLayout( FlowLayout.LEFT) );
      
  for ( int label = 1; label < 10; label++ )
   add( new Button( String.valueOf( label ) ) );
  show();
 }
 
 public  static  void  main( String  args[] ) {
  new  FlowExample( 175, 100 );
  new  FlowExample( 175, 100 );
 }
}
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Example - Smalltalk Sort blocks
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| list |
list := #( 1 6 2 3 9 5 ) asSortedCollection.
Transcript 
 print: list;
 cr.
list sortBlock: [:x :y | x > y].
Transcript 
 print: list;
 cr;
 flush.
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Costs
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Clients must be aware of different Strategies

Communication overhead between Strategy and Context

Increase number of objects
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Benefits
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Alternative to subclassing of Context

Eliminates conditional statements

Replace in Context code like:

  switch  ( flag ) {
   case A: doA(); break;
   case B: doB(); break;
   case C: doC(); break;
  }

  With code like:

  strategy.do();

Gives a choice of implementations
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Refactoring: Replace Conditional Logic with
Strategy
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Conditional logic in a method controls which of 
several variants of a calculation are executed

Create a Strategy for each variant and make the 
method delegate the calculation to a Strategy instance

so
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Replace Conditional Logic with Strategy
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class Foo {
public void bar() {

switch  ( flag ) {
case A: doA(); break;
case B: doB(); break;
case C: doC(); break;

}
}

}

class Foo {
private strategy;
public void bar() {

strategy.do(data);
}

}
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See Refactoring to Patterns, Kerievsky, 2005, pp 129-143 for detail steps 
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Visitor Pattern
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Visitor
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Intent
Represent an operation to be performed on the 
elements of an object structure

Visitor lets you define a new operation without 
changing the classes of the elements on which it 
operates
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Tree Example
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class Node { ... }

class BinaryTreeNode extends Node {...}

class BinaryTreeLeaf extends Node {...}
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Tree Example
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class BinaryTreeNode extends Node {
 public void accept(Visitor aVisitor) {
  aVisitor.visitBinaryTreeNode( this );
 }
}

class BinaryTreeLeaf extends Node {
 public void accept(Visitor aVisitor) {
  aVisitor.visitBinaryTreeLeaf( this );
 }
}

abstract class Visitor {
 abstract void visitBinaryTreeNode( BinaryTreeNode );
 abstract void visitBinaryTreeLeaf( BinaryTreeLeaf );
}
 
class HTMLPrintVisitor extends Visitor {
 public void visitBinaryTreeNode( BinaryTreeNode x ) {
  HTML print code here
 }
 public void visitBinaryTreeLeaf( BinaryTreeLeaf x){ ...}
}

Put operations into separate object - a visitor

Pass the visitor to each element in the structure 

The element then activates the visitor

Visitor performs its operation on the element

Each visitX method only deals with on type of element
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Tree Example
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Visitor
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Double Dispatch
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Note that a visit to one node requires two method calls

 Node example = new BinaryTreeLeaf();
 Visitor traveler = new HTMLPrintVisitor();
 example.accept( traveler );

example.accept() calls aVisitor.visitBinaryTreeNode(this);

The first method selects the correct method in the Visitor class

The second method selects the correct Visitor class
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Issue - Who does the traversal?
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Visitor

Elements in the Structure

Iterator
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What is Wrong with This?
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class Node {
 public void accept(Visitor aVisitor) {
  aVisitor.visit( this );
 }
}

abstract class Visitor {
 abstract void visit( Node );
}
 
class HTMLPrintVisitor extends Visitor {
 public void visit( Node x ) {
  if x is BinaryTreeNode {
   blah
  }
  else if x is BinaryTreeLeaf {
   more blah
  }
 }
}

30Tuesday, February 7, 12



When to Use the Visitor
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Have many classes of objects with differing interfaces, and you want to perform 
operations on these objects that depend on their concrete classes

When many distinct and unrelated operations need to be preformed on objects in 
an object structure and you want to avoid cluttering the classes with these 
operations

When the classes defining the structure rarely change, but you often want to 
define new operations over the structure
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Consequences
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Visitors makes adding new operations easier

Visitors gathers related operations, separates 
unrelated ones

Adding new ConcreteElement classes is hard

Visiting across class hierarchies

Accumulating state

Breaking encapsulation
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Avoiding the accept() method
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Visitor pattern requires elements to have an accept method

Sometimes this is not possible

 You don’t have the source for the elements

Aspect Oriented Programming

AspectJ eleminates the need for an accept method in aspect oriented Java 

AspectS provides a similar process for Smalltalk
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Why not use one of this instead of the Visitor?
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package example;
class BinaryTree {
 public Iterator iterator() {...}
 ... 
}

class DoFoo {
 Iterator elements;
 public DoFoo(BinaryTree tree) {
  elements = tree.iterator();
 }

 public void doIt() {
  while (elements.hasNext() ) {
   Integer next = (Integer) 
elements.next();
   do foo here with next
  }
}
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Magritte
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Web applications have data (domain models)

We need to
 Display the data
 Enter the data
 Validate data
 Store Data
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Magritte
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For each field in a domain model (class) provide a description

Description contains
 Data type   Display string
 Field name  Constraints

descriptionFirstName
 ^ (MAStringDescription auto: 'firstName' label: 'First Name' priority: 20)
   beRequired;
   yourself.

descriptionBirthday
 ^ (MADateDescription auto: 'birthday' label: 'Birthday' priority: 70)
   between:(Date year: 1900) and:Datetoday; 
   yourself
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Magritte
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Each domain model has a collection of descriptions

Different visitors are used to

 Generate html to display data

 Generate form to enter the data

 Validate data from form

 Save data in database
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Sample Page
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 editor := (Person new  asComponent)
    addValidatedSwitch;
    yourself.
 result := self call: editor.
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Refactoring: Move Accumulation to Visitor
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A method accumulates information from heterogenous classes

Move the accumulation task to a Visitor that can visit each class to 
accumulate the information

so
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See Refactoring to Patterns, Kerievsky, 2005, pp 320-338 for details 


