CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2012
Doc 25 Review
May 3 2012

Copyright ©, All rights reserved. 2012 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, May 3, 12

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

What this course is about

Writing quality OO code Unit Testing
Design Patterns Refactoring
Coupling & Cohesion

Thursday, May 3, 12

Anti-Quality

Thursday, May 3, 12

public void onCreate(Bundle icicle) {
super.onCreate(icicle);

this.setContentView(R.layout.main);

db=new Database(this);

listView= (ListView)findViewByld(R.id.list);

ArrayList<Instructor> list=new ArrayList<Instructor>();

LayoutInflater inflater = this.getLayoutInflater();
View header = inflater.inflate(R.layout.main_header, null);

listView.addHeaderView(header);
adapter = new RatingAdapter(list);
listView.setAdapter(adapter);

try {
constantsCursor=db
.getReadableDatabase()
rawQuery("SELECT _id, firstName, lastName, office, phone, email, rating, totalRatings "+
"FROM instructors order by lastName",
null);

while (constantsCursor.moveToNext()) {
/st the instructors in the db
int id = constantsCursor.getint(0);
String firstName = constantsCursor.getString(1);
String lastName = constantsCursor.getString(2);
String office = constantsCursor.getString(3);
String phone = constantsCursor.getString(4);
String email = constantsCursor.getString(5);
int rating = constantsCursor.getint(6);
int totalRatings = constantsCursor.getint(7);

//publish the data
Instructor instructor = (Instructor) new Instructor(firstName, lastName, office, phone, email, rating, totalRatings, id);
adapter.add(instructor);

Thursday, May 3, 12

//
// Method: getFirstName
/I @return type: String
/[This method returns the instructors first name
//
public String getFirstName() {
return this.m_firstName;

Thursday, May 3, 12

/[rew 1 means what?7??
if(last_opened.equals("1")) {
//[rew hope these never change
httpGet = new HttpGet("http://bismarck.sdsu.edu/rateme/list");
} else {
Log.i("Foo","not first timer");

httpGet = new HttpGet("http://bismarck.sdsu.edu/rateme/list/since/" +
last_opened);

}

Thursday, May 3, 12

String url3 = "http://bismarck.sdsu.edu/rateme/comments/*;

Thursday, May 3, 12

public class Assignmt_Three t2Activity extends ListActivity implements
View.OnClickListener {

/** Called when the activity is first created. */
ArrayList<String> array _ids;
ArrayList<String> changedlds;
ArrayList<String> array_fnames;
ArrayList<String> array_Inames;

ArrayAdapter<String> listAdapter;

Thursday, May 3, 12

protected Object dolnBackground(String... params) {

Object response = null;

infoToGet = params(INFORMATION_TO_GET_IDX];

String url = params{URL_IDX];

HitpClient hitpClient = new DefaultHitpClient();

HitpGet gethethod = new HitpGet(url);

y{
=)
response = hitpClient execute(getMethod, responseHandler);
) catch (Throwable t) (
Log e("gil", ttoString()):
response = ;
hitpClient getConnectionManager().shutdown();
return response;
}

hitpClient. getConnectionManager().shutdown();

if (infoToGet equals(INSTRUCTOR LIST)){
ty(
_instructorDb = _dbHelper.getWritableDatabase();

JSONAray instructorArrayAsdsor

lew JSONAray(

(String) response);

for (int k = 0; k < numberOfinstructors; k+-+) {
JSONObject instructor = (JSONObject) instructorArrayAsJson
get(k);
String frstName = instructor getString(*firstName");
String lastName = instructor getString("lastName);
intid = instructor.getint(‘id");
Cursor cursor =_instructorDb.rawQuery(
"SELECT _id, firstname, lastname, offce, phone, * +
"emall, average_rating, number_ratings " +
"FROM instructors WHERE _i
new Stringll{integer.toString(c)}):;
cursor.moveToFirst();
if (cursor getCount() 1 Instructor notin db
categoryContent put("_id", i);
categoryContent put(*firstname?, firstName);
categoryContent put('lastname", lastName);
_instructorDb.inser(‘instructors", null, categoryContent);
}
else {
= %
categoryContent put(*frstname?, firstName);
categoryContent put(*lastname", lastName);
categoryContent put("office”,
cursor getString(cursor getColumnindex(*office"));
categoryContent put(*phone’,
cursor getString(cursor getColumnindex(*phone));
categoryContent put(*emair’,
cursor getString(cursor getColumnindex(*emair));
categoryContent put(*average rating",
cursor getString(cursor getColumnindex(*average_rating")):
categoryContent put('number_ratings".
cursor getString(cursor getColumnindex(*number_rafings"));
_instructorDb.update(‘instructors”, categoryContent, *_i
new String[}Integer toString(id)});
}
cursor.close();
}
} catch (JSONException) {
& printStackTrace();

_instructorDb.close);

else if(infoToGet.equals(INSTRUCTOR_COMMENTS)) {
ty{
_instructorDb =_dbHelper.getWitableDatabase();

instructorld = Integer.parselnt(params{INSTRUCTOR_ID_IDX]);
JSONArray commentArray = new JSONATay(

(String) response); 9

int number0fComments = commentArray length();

Thursday, May 3, 12

newRating = -1; // flag for rating being omitted

Thursday, May 3, 12

10

public class Assign3Activity extends Activity {

int x = 0;

List<String> list = new ArrayList<String>();
List<String> list2 = new ArrayList<String>();
List<String> list3 = new ArrayList<String>();
List<String> list4 = new ArrayList<String>();
List<String> newList = new ArrayList<String>();
List<String> newList2 = new ArrayList<String>();

Thursday, May 3, 12

11

private String PostComments(String Arg1,String Arg2) {

Thursday, May 3, 12

12

private class SampleTask extends AsyncTask<String, String, String> {

pr = new DatabaseHelper(this);
db = new DatabaseHelper(this);

Thursday, May 3, 12

13

Prime Directive
Data + Operations

L

et T .;_;'f,",""' S
B R e e L O L
! ; Ry - ' -y lA' S R S

T ey R

/_.. : : “ 4 2% : A v“
1 ¢ . Yo v)]

“r

 jog
.

Thursday, May 3, 12

Heuristics

Keep related data and behavior in one place

A class should capture one and only one key abstraction

Thursday, May 3, 12

15

Heuristics

Beware of classes that have many accessor methods defined in their public interface
Do not create god classes/objects in your system

Beware of classes that have too much noncommunicating behavior

Thursday, May 3, 12

16

Code Smells

Thursday, May 3, 12

17

Duplicate Code

Thursday, May 3, 12

18

Long Method - Large Class

The average method size should be less than 8 lines of code (LOC) for Smalltalk
and 24 LOC for C++

The average number of methods per class should be less than 20
The average number of fields per class should be less than 6.
The class hierarchy nesting level should be less than 6

The average number of comment lines per method should be greater than 1

19

Thursday, May 3, 12

Mark Lorenz, Object-Oriented Software Development: A Practical Guide, 1993, Appendix | Measures and
Metrics

19

Feature Envy

A method seems more interested in a class other
than the on it is In.

20

Thursday, May 3, 12

20

Data Clumps

Same three or four data items together in lots of places

21

Thursday, May 3, 12

21

Primitive Obsession

Using primitive types instead of creating small classes

22

Thursday, May 3, 12

22

Switch Statements

How do you program without them?

23

Thursday, May 3, 12

23

Lazy Class

Class that is not doing enough to pay for itself

24

Thursday, May 3, 12

24

Data Class

Class with just fields and setter/getter methods
Data classes are like children.

They are okay as a starting point, but to participate as a grownup
object, they need to take some responsibility

25

Thursday, May 3, 12

25

Inappropriate Intimacy

Classes that spend too much time delving into other classes private parts

26

Thursday, May 3, 12

26

Message Chains

location = rat.getRoom().getMaze().getLocation()

27

Thursday, May 3, 12

27

Patterns

28

Thursday, May 3, 12

28

Creational Patterns

Abstract factory

Builder

Factory method

Lazy initialization

Multiton

Object pool

Prototype

Resource acquisition is
initialization

Singleton

Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

Separate the construction of a complex object from its representation
allowing the same construction process to create various representations.

Define an interface for creating an object, but let subclasses decide which
class to instantiate. Factory Method lets a class defer instantiation to
subclasses (dependency injectionl!?]).

Tactic of delaying the creation of an object, the calculation of a value, or
some other expensive process until the first time it is needed.

Ensure a class has only named instances, and provide global point of
access to them.

Avoid expensive acquisition and release of resources by recycling objects
that are no longer in use. Can be considered a generalisation
of connection pool and thread poolpatterns.

Specify the kinds of objects to create using a prototypical instance, and
create new objects by copying this prototype.

Ensure that resources are properly released by tying them to the lifespan
of suitable objects.

Ensure a class has only one instance, and provide a global point of
access to it.

29

Thursday, May 3, 12

29

From http://en.wikipedia.org/wiki/Software_design_pattern

http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://en.wikipedia.org/wiki/Builder_pattern
http://en.wikipedia.org/wiki/Builder_pattern
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Lazy_initialization
http://en.wikipedia.org/wiki/Lazy_initialization
http://en.wikipedia.org/wiki/Multiton_pattern
http://en.wikipedia.org/wiki/Multiton_pattern
http://en.wikipedia.org/wiki/Object_pool_pattern
http://en.wikipedia.org/wiki/Object_pool_pattern
http://en.wikipedia.org/wiki/Connection_pool
http://en.wikipedia.org/wiki/Connection_pool
http://en.wikipedia.org/wiki/Thread_pool
http://en.wikipedia.org/wiki/Thread_pool
http://en.wikipedia.org/wiki/Prototype_pattern
http://en.wikipedia.org/wiki/Prototype_pattern
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://en.wikipedia.org/wiki/Singleton_pattern
http://en.wikipedia.org/wiki/Singleton_pattern

Structural patterns

Adapter or
Wrapper
orTranslator.

Bridge

Composite
Decorator

Facade

Front Controller

Flyweight
Proxy

Module

Convert the interface of a class into another interface clients expect. An
adapter lets classes work together that could not otherwise because of
incompatible interfaces. The enterprise integration pattern equivalent is
the Translator.

Decouple an abstraction from its implementation allowing the two to vary
independently.

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly.

Attach additional responsibilities to an object dynamically keeping the same
interface. Decorators provide a flexible alternative to subclassing for
extending functionality.

Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

The pattern relates to the design of web applications. It provides a centralized
entry point for handling requests.

Use sharing to support large numbers of similar objects efficiently.
Provide a surrogate or placeholder for another object to control access to it.

Group several related elements, such as classes, singletons, methods,
globally used, into a single conceptual entity.

30

Thursday, May 3, 12

30

From http://en.wikipedia.org/wiki/Software_design_pattern

http://en.wikipedia.org/wiki/Structural_pattern
http://en.wikipedia.org/wiki/Structural_pattern
http://en.wikipedia.org/wiki/Adapter_pattern
http://en.wikipedia.org/wiki/Adapter_pattern
http://www.eaipatterns.com/MessageTranslator.html
http://www.eaipatterns.com/MessageTranslator.html
http://www.eaipatterns.com/MessageTranslator.html
http://www.eaipatterns.com/MessageTranslator.html
http://en.wikipedia.org/wiki/Bridge_pattern
http://en.wikipedia.org/wiki/Bridge_pattern
http://en.wikipedia.org/wiki/Composite_pattern
http://en.wikipedia.org/wiki/Composite_pattern
http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Facade_pattern
http://en.wikipedia.org/wiki/Facade_pattern
http://en.wikipedia.org/wiki/Front_Controller_pattern
http://en.wikipedia.org/wiki/Front_Controller_pattern
http://en.wikipedia.org/wiki/Flyweight_pattern
http://en.wikipedia.org/wiki/Flyweight_pattern
http://en.wikipedia.org/wiki/Proxy_pattern
http://en.wikipedia.org/wiki/Proxy_pattern
http://en.wikipedia.org/wiki/Module_pattern
http://en.wikipedia.org/wiki/Module_pattern

Behavioral patterns

Blackboard

Chain of
responsibility

Command
Interpreter

lterator

Mediator

Memento

Null object

Generalized observer, which allows multiple readers and writers.
Communicates information system-wide.

Avoid coupling the sender of a request to its receiver by giving more than
one object a chance to handle the request. Chain the receiving objects and
pass the request along the chain until an object handles it.

Encapsulate a request as an object, thereby letting you parameterize clients
with different requests, queue or log requests, and
support undoable operations.

Given a language, define a representation for its grammar along with an
interpreter that uses the representation to interpret sentences in the
language.

Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other
explicitly, and it lets you vary their interaction independently.

Without violating encapsulation, capture and externalize an object's internal
state allowing the object to be restored to this state later.

Avoid null references by providing a default object.

31

Thursday, May 3, 12

31

From http://en.wikipedia.org/wiki/Software_design_pattern

http://en.wikipedia.org/wiki/Behavioral_pattern
http://en.wikipedia.org/wiki/Behavioral_pattern
http://en.wikipedia.org/wiki/Chain_of_responsibility_pattern
http://en.wikipedia.org/wiki/Chain_of_responsibility_pattern
http://en.wikipedia.org/wiki/Chain_of_responsibility_pattern
http://en.wikipedia.org/wiki/Chain_of_responsibility_pattern
http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Undo
http://en.wikipedia.org/wiki/Undo
http://en.wikipedia.org/wiki/Interpreter_pattern
http://en.wikipedia.org/wiki/Interpreter_pattern
http://en.wikipedia.org/wiki/Iterator_pattern
http://en.wikipedia.org/wiki/Iterator_pattern
http://en.wikipedia.org/wiki/Aggregate_pattern
http://en.wikipedia.org/wiki/Aggregate_pattern
http://en.wikipedia.org/wiki/Mediator_pattern
http://en.wikipedia.org/wiki/Mediator_pattern
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Memento_pattern
http://en.wikipedia.org/wiki/Memento_pattern
http://en.wikipedia.org/wiki/Null_Object_pattern
http://en.wikipedia.org/wiki/Null_Object_pattern

Behavioral patterns

Observer orPublish/subscribe

Servant
Specification

State

Strategy

Template method

Visitor

Define a one-to-many dependency between objects
where a state change in one object results in all its
dependents being notified and updated automatically.

Define common functionality for a group of classes

Recombinable business logic in a Boolean fashion

Allow an object to alter its behavior when its internal
state changes. The object will appear to change its
class.

Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it.

Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template method
lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure.

Represent an operation to be performed on the
elements of an object structure. Visitor lets you define
a new operation without changing the classes of the
elements on which it operates.

32

Thursday, May 3, 12
From http://en.wikipedia.org/wiki/Software_design_pattern

32

http://en.wikipedia.org/wiki/Behavioral_pattern
http://en.wikipedia.org/wiki/Behavioral_pattern
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Design_pattern_Servant
http://en.wikipedia.org/wiki/Design_pattern_Servant
http://en.wikipedia.org/wiki/Specification_pattern
http://en.wikipedia.org/wiki/Specification_pattern
http://en.wikipedia.org/wiki/Business_logic
http://en.wikipedia.org/wiki/Business_logic
http://en.wikipedia.org/wiki/Boolean_algebra
http://en.wikipedia.org/wiki/Boolean_algebra
http://en.wikipedia.org/wiki/State_pattern
http://en.wikipedia.org/wiki/State_pattern
http://en.wikipedia.org/wiki/Strategy_pattern
http://en.wikipedia.org/wiki/Strategy_pattern
http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Visitor_pattern
http://en.wikipedia.org/wiki/Visitor_pattern

Concurrency Patterns

Active Obiject

Balking

Binding properties
Messaging design pattern (MDP)
Double-checked locking
Event-based asynchronous
Guarded suspension

Lock

Monitor object

Reactor

Read-write lock

Scheduler

Thread pool
Thread-specific storage

33

Thursday, May 3, 12

33

http://en.wikipedia.org/wiki/Active_object
http://en.wikipedia.org/wiki/Active_object
http://en.wikipedia.org/wiki/Balking_pattern
http://en.wikipedia.org/wiki/Balking_pattern
http://en.wikipedia.org/wiki/Messaging_pattern
http://en.wikipedia.org/wiki/Messaging_pattern
http://en.wikipedia.org/wiki/Double_checked_locking_pattern
http://en.wikipedia.org/wiki/Double_checked_locking_pattern
http://en.wikipedia.org/wiki/Event-Based_Asynchronous_Pattern
http://en.wikipedia.org/wiki/Event-Based_Asynchronous_Pattern
http://en.wikipedia.org/wiki/Guarded_suspension
http://en.wikipedia.org/wiki/Guarded_suspension
http://en.wikipedia.org/wiki/Lock_(computer_science)
http://en.wikipedia.org/wiki/Lock_(computer_science)
http://en.wikipedia.org/wiki/Monitor_(synchronization)
http://en.wikipedia.org/wiki/Monitor_(synchronization)
http://en.wikipedia.org/wiki/Reactor_pattern
http://en.wikipedia.org/wiki/Reactor_pattern
http://en.wikipedia.org/wiki/Read/write_lock_pattern
http://en.wikipedia.org/wiki/Read/write_lock_pattern
http://en.wikipedia.org/wiki/Scheduler_pattern
http://en.wikipedia.org/wiki/Scheduler_pattern
http://en.wikipedia.org/wiki/Thread_pool_pattern
http://en.wikipedia.org/wiki/Thread_pool_pattern
http://en.wikipedia.org/wiki/Thread-Specific_Storage
http://en.wikipedia.org/wiki/Thread-Specific_Storage

How to Select a design pattern

Consider how design patterns solve design patterns
Scan Intent sections

Study how patterns interrelate

Study patterns of like purpose

Examine a cause of redesign

Consider what should vary in your design

34

Thursday, May 3, 12

34

Cause of Redesign

Creating an object by specifying a class explicitly

Abstract factory, Factory Method, Prototype

35

Thursday, May 3, 12

35

Cause of Redesign

Dependence on specific operation

Chain of Responsibility, Command

36

Thursday, May 3, 12

36

Cause of Redesign

Dependence on hardware and software platforms

Abstract Factory, Bridge

37

Thursday, May 3, 12

37

Cause of Redesign

Dependence on object representations or implementations

Abstract factory, Bridge, Memento, Proxy

38

Thursday, May 3, 12

38

Cause of Redesign

Algorithmic dependencies

Builder, Iterator, Strategy, Template Method, Visitor

39

Thursday, May 3, 12

39

Cause of Redesign

Extending functionality by subclassing

Abstract Factory, Bridge, Chain of Responsibility, Command, Facade,
Mediator, Observer

40

Thursday, May 3, 12

40

Cause of Redesign

Inability to alter classes conveniently

Adapter, Decorator, Visitor

41

Thursday, May 3, 12

41

What is the difference between

Structural and behavioral patterns

42

Thursday, May 3, 12

42

