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Reading Assignment
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Refactoring: Improving the Design of Existing Code, Fowler, Addison-Wesley, 1999

Jan 26 - Chapters 1 & 2

Jan 31 - Chapters 3 & 4
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Unit Testing

4Thursday, January 26, 12



Johnson's Law

If it is not tested it does not work

The more time between coding and testing

 More effort is needed to write tests
 More effort is needed to find bugs
 Fewer bugs are found
 Time is wasted working with buggy code
 Development time increases
 Quality decreases

Testing

5
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Unit Testing
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Tests individual code segments

Automated tests
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Using print statements

Writing driver program in main

Writing small sample programs to run code

Running program and testing it be using it

What wrong with:
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We have a QA Team, so why should I write tests?
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First write the tests

Then write the code to be tested

Writing tests first saves time

 Makes you clear of the interface & functionality of the code 

 Removes temptation to skip tests

When to Write Tests
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Everything that could possibly break

Test values
 Inside valid range
 Outside valid range
 On the boundary between valid/invalid 

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

What to Test
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Adapted with permission from “A Short Catalog of 
Test Ideas” by Brian Marick, 
http://www.testing.com/writings.html

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers
Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Common Things Programs Handle Incorrectly
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XUnit
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Free frameworks for Unit testing

SUnit originally written by Kent Beck 1994

JUnit written by Kent Beck & Erich Gamma

Available at: http://www.junit.org/

Ports to many languages at:
 http://www.xprogramming.com/software.htm
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XUnit Versions
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3.x
Old version
Works with a versions of Java

4.x
Current version 4.8.1
Uses Annotations
Requires Java 5 or later
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Simple Class to Test
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public class Adder {
 private int base;
 public Adder(int value) {
  base = value;
 }
 
 public int add(int amount) {
  return base + amount;
 }
}
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Creating Test Case in Eclipse
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Fill in dialog window &
 create the test cases

Creating Test Case in Eclipse

16

16Thursday, January 26, 12



Test Class
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import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TestAdder {

 @Test
 public void testAdd() {
  Adder example = new Adder(3);
  assertEquals(4, example.add(1));
 }
 
 @Test
 public void testAddFail() {
  Adder example = new Adder(3);
  assertTrue(3 == example.add(1));
 }
}
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Running the Tests
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The result
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assertArrayEquals()
assertTrue()
assertFalse()
assertEquals()
assertNotEquals()
assertSame()
assertNotSame()
assertNull()
assertNotNull()
fail()

Assert Methods
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Annotations
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After
AfterClass
Before
BeforeClass
Ignore
Rule
Test
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Using Before
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import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;

import org.junit.Before;
import org.junit.Test;

public class TestAdder {
 Adder example;
 @Before
 public void setupExample() {
  example = new Adder(3);
 }
 
 @Test
 public void testAdd() {
  assertEquals(4, example.add(1));
 }
}
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Refactoring
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Refactoring
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Changing the internal structure of software that changes its observable behavior

Done to make the software easier to understand and easier to modify
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When to Refactor
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Rule of three

Three strikes and you refactor
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When to Refactor
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When you add a new function
When you need to fix a bug
When you do a code review
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When Refactoring is Hard
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Databases

Changing published interfaces

Major design issues
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When you add a feature to a program

If needed Refactor the program to make it easy to add the  feature

Then add the feature
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Before you start refactoring

Make sure that you have a solid suite of tests

Test should be self-checking
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Do I need tests when I use my IDEs refactoring tools?

Are your IDE refactoring tools bug free?
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Code Smells
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Duplicate Code
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Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

32Thursday, January 26, 12



33

The average method size should be less than 8 lines of code (LOC) for Smalltalk 
and 24 LOC for C++

The average number of methods per class should be less than 20

The average number of fields per class should be less than 6.

The class hierarchy nesting level should be less than 6

The average number of comment lines per method should be greater than 1

Long Method - Large Class
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Long Parameter List
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a.foo(12, 2, "cat", "<tr>", 19.6, x, y, classList, cutOffPoint)
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Divergent Change
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One class is changed in different ways for different reasons
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ShotGun Surgery
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When you have to make a kind of change you 
have to make a lot of little changes in different 
locations
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Feature Envy
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A method seems more interested in a class other 
than the on it is in.
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Data Clumps

38

Same three or four data items together in lots of places

38Thursday, January 26, 12



Primitive Obsession
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Using primitive types instead of creating small classes
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Switch Statements

40

How do you program without them?
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Lazy Class
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Class that is not doing enough to pay for itself
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Data Class
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Class with just fields and setter/getter methods

Data classes are like children.

They are okay as a starting point, but to participate as a grownup 
object, they need to take some responsibility
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Inappropriate Intimacy
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Classes that spend too much time delving into other classes private parts
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Message Chains
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location = rat.getRoom().getMaze().getLocation()
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Negative Slope
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if (foo) {
if (bar) {

if (cat = dog) {
if (rat < 10) {

...
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Temporary Field
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Field is only used in certain circumstances

Common case
field is only used by an algorithm
Don't want to pass around long parameter list
Make parameter a field
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Refused Bequest
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Subclass does not want to support all the methods of parent class

Subclass should support the interface of the parent class
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Eclipse Refactoring
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Eclipse Refactoring Menu
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Rename Class
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public class Foo {
  public int foo() {
   return 10;
 }
}

public class Bar {
 public int bar() {
  Foo test = new Foo();
  return test.foo() + 99;
 }
}

public class NewFoo {
  public int foo() {
   return 10;
 }
}

public class Bar {
 public int bar() {
  NewFoo test = new NewFoo();
  return test.foo() + 99;
 }
}
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Eclipse Rename
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Move
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public class Foo {
 public int foo() { return 10;}
 
 public int fooTwo() { return 20; }
}

public class Bar {
 public int helperMethod(Foo test) {
  return test.foo() + test.fooTwo();
 }
 
 public int callHelper() {
  Foo data = new Foo();
  return helperMethod(data);
 }
}

public class Bar {
 public int callHelper() {
  Foo data = new Foo();
  return data.sum();
 }
}

public class Foo {
 public int foo() { return 10;}
 
 public int fooTwo() {return 20; }

 public int sum() {
  return foo() + fooTwo();
 }
}
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Eclipse Move
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Extract Class

54

54Thursday, January 26, 12



Refactoring Tool Issue
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People tend to only use the features they know 
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Refactoring Tool Issue
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Is a tool hard to use because I am unfamiliar with it or is it just hard to use
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Refactoring by 41 Professional Programmers
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Number of Programmers used 
Refactoring Total Times used

IntroduceFactory 1 1

PushDown 1 1

UseSupertype 1 6

EncapsulateField 2 5

Introduce Parameter 3 25

Convert Local to Field 5 37

Extract Interface 10 26

Inline 11 185

Modify Parameters 11 79

Pull up 11 37

Extract Method 20 344

Move 24 212

Rename 41 2396
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Try In Eclipse
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Rename
Move
Encapsulate Field
Extract Method
Extract Class
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