
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2012
Doc 3 Refactoring Intro

Jan 27, 2011

Copyright ©, All rights reserved. 2012 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

1Thursday, January 26, 12

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

JUnit Web site: http://www.junit.org/

JUnit JavaDoc, http://kentbeck.github.com/junit/javadoc/latest/

Brian Marick’s Testing Web Site: http://www.exampler.com/testing-com/

Testing for Programmers, Brian Marick, Available at: http://www.exampler.com/testing-com/writings.html

Refactoring: Improving the Design of Existing Code, Fowler, Addison-Wesley, 1999, chapters 1 & 3

2Thursday, January 26, 12

Reading Assignment

3

Refactoring: Improving the Design of Existing Code, Fowler, Addison-Wesley, 1999

Jan 26 - Chapters 1 & 2

Jan 31 - Chapters 3 & 4

3Thursday, January 26, 12

4

Unit Testing

4Thursday, January 26, 12

Johnson's Law

If it is not tested it does not work

The more time between coding and testing

 More effort is needed to write tests
 More effort is needed to find bugs
 Fewer bugs are found
 Time is wasted working with buggy code
 Development time increases
 Quality decreases

Testing

5

5Thursday, January 26, 12

Unit Testing

6

Tests individual code segments

Automated tests

6Thursday, January 26, 12

Using print statements

Writing driver program in main

Writing small sample programs to run code

Running program and testing it be using it

What wrong with:

7

7Thursday, January 26, 12

We have a QA Team, so why should I write tests?

8

8Thursday, January 26, 12

First write the tests

Then write the code to be tested

Writing tests first saves time

 Makes you clear of the interface & functionality of the code

 Removes temptation to skip tests

When to Write Tests

9

9Thursday, January 26, 12

Everything that could possibly break

Test values
 Inside valid range
 Outside valid range
 On the boundary between valid/invalid

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

What to Test

10

10Thursday, January 26, 12

Adapted with permission from “A Short Catalog of
Test Ideas” by Brian Marick,
http://www.testing.com/writings.html

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers
Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Common Things Programs Handle Incorrectly

11

11Thursday, January 26, 12

http://www.testing.com/writings.html
http://www.testing.com/writings.html

XUnit

12

Free frameworks for Unit testing

SUnit originally written by Kent Beck 1994

JUnit written by Kent Beck & Erich Gamma

Available at: http://www.junit.org/

Ports to many languages at:
 http://www.xprogramming.com/software.htm

12Thursday, January 26, 12

XUnit Versions

13

3.x
Old version
Works with a versions of Java

4.x
Current version 4.8.1
Uses Annotations
Requires Java 5 or later

13Thursday, January 26, 12

Simple Class to Test

14

public class Adder {
 private int base;
 public Adder(int value) {
 base = value;
 }

 public int add(int amount) {
 return base + amount;
 }
}

14Thursday, January 26, 12

Creating Test Case in Eclipse

15

15Thursday, January 26, 12

Fill in dialog window &
 create the test cases

Creating Test Case in Eclipse

16

16Thursday, January 26, 12

Test Class

17

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TestAdder {

 @Test
 public void testAdd() {
 Adder example = new Adder(3);
 assertEquals(4, example.add(1));
 }

 @Test
 public void testAddFail() {
 Adder example = new Adder(3);
 assertTrue(3 == example.add(1));
 }
}

17Thursday, January 26, 12

Running the Tests

18

18Thursday, January 26, 12

The result

19

19Thursday, January 26, 12

assertArrayEquals()
assertTrue()
assertFalse()
assertEquals()
assertNotEquals()
assertSame()
assertNotSame()
assertNull()
assertNotNull()
fail()

Assert Methods

20

20Thursday, January 26, 12

For a complete list see http://kentbeck.github.com/junit/javadoc/latest/

Annotations

21

After
AfterClass
Before
BeforeClass
Ignore
Rule
Test

21Thursday, January 26, 12

Using Before

22

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;

import org.junit.Before;
import org.junit.Test;

public class TestAdder {
 Adder example;
 @Before
 public void setupExample() {
 example = new Adder(3);
 }

 @Test
 public void testAdd() {
 assertEquals(4, example.add(1));
 }
}

22Thursday, January 26, 12

23

Refactoring

23Thursday, January 26, 12

Refactoring

24

Changing the internal structure of software that changes its observable behavior

Done to make the software easier to understand and easier to modify

24Thursday, January 26, 12

When to Refactor

25

Rule of three

Three strikes and you refactor

25Thursday, January 26, 12

When to Refactor

26

When you add a new function
When you need to fix a bug
When you do a code review

26Thursday, January 26, 12

When Refactoring is Hard

27

Databases

Changing published interfaces

Major design issues

27Thursday, January 26, 12

28

When you add a feature to a program

If needed Refactor the program to make it easy to add the feature

Then add the feature

28Thursday, January 26, 12

29

Before you start refactoring

Make sure that you have a solid suite of tests

Test should be self-checking

29Thursday, January 26, 12

30

Do I need tests when I use my IDEs refactoring tools?

Are your IDE refactoring tools bug free?

30Thursday, January 26, 12

31

Code Smells

31Thursday, January 26, 12

Duplicate Code

32

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

32Thursday, January 26, 12

33

The average method size should be less than 8 lines of code (LOC) for Smalltalk
and 24 LOC for C++

The average number of methods per class should be less than 20

The average number of fields per class should be less than 6.

The class hierarchy nesting level should be less than 6

The average number of comment lines per method should be greater than 1

Long Method - Large Class

33Thursday, January 26, 12
Mark Lorenz, Object-Oriented Software Development: A Practical Guide, 1993, Appendix I Measures and
Metrics

Long Parameter List

34

a.foo(12, 2, "cat", "<tr>", 19.6, x, y, classList, cutOffPoint)

34Thursday, January 26, 12

Divergent Change

35

One class is changed in different ways for different reasons

35Thursday, January 26, 12

ShotGun Surgery

36

When you have to make a kind of change you
have to make a lot of little changes in different
locations

36Thursday, January 26, 12

Feature Envy

37

A method seems more interested in a class other
than the on it is in.

37Thursday, January 26, 12

Data Clumps

38

Same three or four data items together in lots of places

38Thursday, January 26, 12

Primitive Obsession

39

Using primitive types instead of creating small classes

39Thursday, January 26, 12

Switch Statements

40

How do you program without them?

40Thursday, January 26, 12

Lazy Class

41

Class that is not doing enough to pay for itself

41Thursday, January 26, 12

Data Class

42

Class with just fields and setter/getter methods

Data classes are like children.

They are okay as a starting point, but to participate as a grownup
object, they need to take some responsibility

42Thursday, January 26, 12

Inappropriate Intimacy

43

Classes that spend too much time delving into other classes private parts

43Thursday, January 26, 12

Message Chains

44

location = rat.getRoom().getMaze().getLocation()

44Thursday, January 26, 12

Negative Slope

45

if (foo) {
if (bar) {

if (cat = dog) {
if (rat < 10) {

...

45Thursday, January 26, 12

Temporary Field

46

Field is only used in certain circumstances

Common case
field is only used by an algorithm
Don't want to pass around long parameter list
Make parameter a field

46Thursday, January 26, 12

Refused Bequest

47

Subclass does not want to support all the methods of parent class

Subclass should support the interface of the parent class

47Thursday, January 26, 12

48

Eclipse Refactoring

48Thursday, January 26, 12

Eclipse Refactoring Menu

49

49Thursday, January 26, 12

Rename Class

50

public class Foo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 Foo test = new Foo();
 return test.foo() + 99;
 }
}

public class NewFoo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 NewFoo test = new NewFoo();
 return test.foo() + 99;
 }
}

50Thursday, January 26, 12

Eclipse Rename

51

51Thursday, January 26, 12

Move

52

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() { return 20; }
}

public class Bar {
 public int helperMethod(Foo test) {
 return test.foo() + test.fooTwo();
 }

 public int callHelper() {
 Foo data = new Foo();
 return helperMethod(data);
 }
}

public class Bar {
 public int callHelper() {
 Foo data = new Foo();
 return data.sum();
 }
}

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() {return 20; }

 public int sum() {
 return foo() + fooTwo();
 }
}

52Thursday, January 26, 12

Eclipse Move

53

53Thursday, January 26, 12

Extract Class

54

54Thursday, January 26, 12

Refactoring Tool Issue

55

People tend to only use the features they know

55Thursday, January 26, 12

Refactoring Tool Issue

56

Is a tool hard to use because I am unfamiliar with it or is it just hard to use

56Thursday, January 26, 12

Refactoring by 41 Professional Programmers

57

Number of Programmers used
Refactoring Total Times used

IntroduceFactory 1 1

PushDown 1 1

UseSupertype 1 6

EncapsulateField 2 5

Introduce Parameter 3 25

Convert Local to Field 5 37

Extract Interface 10 26

Inline 11 185

Modify Parameters 11 79

Pull up 11 37

Extract Method 20 344

Move 24 212

Rename 41 2396

57Thursday, January 26, 12

From Refactoring Tools: Fitness for Purpose, Emerson Murphy-Hill and Andrew P. Black,http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.139.191&rep=rep1&type=pdf

Try In Eclipse

58

Rename
Move
Encapsulate Field
Extract Method
Extract Class

58Thursday, January 26, 12

