
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2012

Doc 12 Object Coupling & Metrics
March 3, 2011

Copyright ©, All rights reserved. 2012 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

1Tuesday, February 28, 12

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Object Coupling and Object Cohesion, chapter 7 of Essays on Object-Oriented
Software Engineering, Vol. 1, Berard, Prentice-Hall, 1993, pp 92-111

Cyclomatic complexity, http://en.wikipedia.org/wiki/Cyclomatic_complexity

Lines of Code, http://en.wikipedia.org/wiki/Source_lines_of_code

Eclipse Metrics, http://metrics.sourceforge.net/

Specialization Index, http://semmle.com/documentation/semmlecode-glossary/
specialization-index-of-a-type/

OO Design Quality Metrics: An Analysis of Dependencies, Robert Martin, http://
www.objectmentor.com/resources/articles/oodmetrc.pdf

Source code for twitter4j, http://yusuke.homeip.net/twitter4j/en/index.html

Eclipse Metrics Plugin, http://eclipse-metrics.sourceforge.net/

Object-Oriented Metrics: Measures of Complexity, Brian Henderson-Sellers, Prentice
Hall, 1996

2Tuesday, February 28, 12

3

Object Coupling

3Tuesday, February 28, 12

4

Object Coupling

Interface Coupling Internal Coupling

Inside Internal
 Coupling

Outside Internal
 Coupling

From UnderneathFrom the
side

4Tuesday, February 28, 12

Internal Coupling & Cohesion

5

Internal Coupling
Physical relationships among the items that comprise an object

Cohesion
Logical relationships among the items that comprise an object

5Tuesday, February 28, 12

Interface Coupling

6

One object refers to another specific object, and the original object
makes direct references to one or more items in the specific object's
public interface

Includes module coupling already covered

Weakest form of object coupling, but has wide variation

Issues
 Object abstraction decoupling
 Selector decoupling
 Constructor decoupling
 Iterator decoupling

6Tuesday, February 28, 12

Object Abstraction Decoupling

7

Assumptions that one object makes about a category of other objects are isolated and
used as parameters to instantiate the original object.

C++/Java 1.5 Example

class LinkedListCell {
 int cellItem;
 LinkedListCell* next;

 // code can now use fact that cellItem is an int
 if (cellItem == 5) print("We Win");
}

template <class type>
class LinkedListCell#2 {
 type cellItem;
 LinkedListCell* next;

 // code does not know the type, it is just a cell item,
 // it becomes an abstraction
}

7Tuesday, February 28, 12

Selector Decoupling

8

Counter Example
class Counter{
 int count = 0;

 public void increment() { count++; }
 public void reset() { count = 0; }
 public void display() {
 Java Swing code to display the counter
 in a slider bar
}

Selector Decoupled
class Counter{
 int count = 0;

 public void increment() { count++; }
 public void reset() { count = 0; }
 public int count() {return count;}
 public String toString() {return String.valueOf(count);}
}

Counter

8Tuesday, February 28, 12

Selectors

9

Return state information about their encapsulated object and
Do not alter the state of their encapsulated object

public void display() {
 Swing GUI code to display the counter
}

public String toString() {return String.valueOf(count);}

Selector
decoupling

9Tuesday, February 28, 12

Primitive Methods

10

Any method that cannot be implemented simply, efficiently, and reliably
without knowledge of the underlying implementation of the object

Functionally cohesive, they perform a single specific function

Small, seldom exceed five "lines of code"

Types

Selectors (get operations)
Constructors (not the same as class constructors)
Iterators

10Tuesday, February 28, 12

 Composite method

11

Any method constructed from two or more primitive methods

sometimes from different objects

11Tuesday, February 28, 12

Primitive Objects

12

Primitive objects are objects that are both:

 Defined in the standard for the implementation language
 Globally known

Primitive objects don't count in coupling with other objects

Why not?

12Tuesday, February 28, 12

Constructors

13

class Calendar {
 public void getMonth(from where, or what) { blah }
}

class Calendar {
 public static Calendar fromString(String date) { blah}
}

Operations that construct a new, or altered version of an object

13Tuesday, February 28, 12

Composite Object

14

Object conceptually composed of two or more objects

Heterogeneous Composite Object

Object conceptually composed from objects which are not all conceptually the same

class Date{
 int year;
 int month;
 int day;
}

Homogeneous Composite Object

Object conceptually composed from objects which are all conceptually the same

list of names - each item is a member of the same general category of object – a name

14Tuesday, February 28, 12

Iterator

15

Allows the user to visit all the nodes in a homogeneous composite object
and to perform some user-supplied operation at each node

15Tuesday, February 28, 12

16

Object Coupling

Interface Coupling Internal Coupling

Inside Internal
 Coupling

Outside Internal
 Coupling

From UnderneathFrom the
side

16Tuesday, February 28, 12

Inside Internal Object Coupling

17

Coupling between state and operations of an object

The big issue: Accessing state

Changing the structure of the state of an object requires changing all
operations that access the state including operations in subclasses

Solution: Access state via access operations

C++ implementation
 Provide private functions to access and change each data member

17Tuesday, February 28, 12

Outside Internal Coupling from Underneath

18

Coupling between a class and subclass involving private state and private
operations

Major Issues

Access to inherited state
 Direct access to inherited state
 Access via operations

Unwanted Inheritance

 Parent class may have operations and state not needed by subclass

18Tuesday, February 28, 12

Outside Internal Coupling from the Side

19

Class A accesses private state or private operations of class B

Class A and B are not related via inheritance

Main causes

Using non-object-oriented languages
Special language "features"
C++ friends

19Tuesday, February 28, 12

20

Metrics

20Tuesday, February 28, 12

Metrics

21

Effort moves toward whatever is measured

DeMarco's Principle

21Tuesday, February 28, 12

The Swedish Army Dictum

22

When the map and the territory don't agree, always believe the territory.

22Tuesday, February 28, 12

Eclipse Metrics 1.3.6

23

http://metrics.sourceforge.net/

Docs

http://sourceforge.net/projects/metrics

Source Forge Site

Eclipse plugin

Generates about 20 metrics
Displays result in tables in Eclipse
Generates dependency graphs

23Tuesday, February 28, 12

Eclipse Metrics Plugin

24

http://eclipse-metrics.sourceforge.net/

Author: Lance Walton

Generates about same metrics as Metrics 1.3.6
Exports results to html or csv
Generates table and graphs

24Tuesday, February 28, 12

Lines Of Code

25

SLOC

Rough measure of size

Physical SLOC
Code + comments + blank lines
Not count blank lines over 25% of a section
Eclipse Metrics - calls this Total Lines of Code (TLOC)

Logical SLOC
Just lines of actual code
Eclipse Metrics

calls this Method Lines of Code (MLOC)
But only code inside method bodies

Effort is highly correlated with SLOC

25Tuesday, February 28, 12

Basic COCOMO

26

Effort Applied = a(KLOC)b [man-months]

Software Cost Estimation Model

Type a b

Organic 2.4 1.05

Semi-detached 3.0 1.12

Embedded 3.6 1.20

Organic
Small team, less than rigid requirements

Semi-detached
Medium teams,

Embedded
Tight constraints

26Tuesday, February 28, 12

Example - 2 KLOC Embedded

27

Effort Applied = a(KLOC)b [man-months]

Effort Applied = 3.6*(2)1.20 = 8.3 man-months

27Tuesday, February 28, 12

Problems with LOC

28

Language differences

Hand written code verses autogenerated code

Programmer variation

Defining and counting LOC

Coding accounts for about 35% of overall effort

28Tuesday, February 28, 12

Twitter4j Example

29

29Tuesday, February 28, 12

Eclipse Metrics Plugin

30

30Tuesday, February 28, 12

Metrics 1.3.6 finds 8161 total lines of code. Eclipse Metrics Plugin finds 11113 total lines of code as it does not remove large
segments of white space

Eclipse Metrics Plugin

31

31Tuesday, February 28, 12

Number of statements = Logical LOC. Not the difference from the graph on the previous slide.

More Size Metrics

32

Number of Packages
Number of Interfaces
Number of classes per Package

32Tuesday, February 28, 12

The number of interfaces might be considered a metric related to abstraction. Although (number of interfaces / number of class)
per package might be a better metric. At least in Java. Abstraction is a better metric for this.

McCabe Cyclomatic Complexity

33

Number of linearly independent paths through a program

From graph theory

M = E − N + 2P

M = cyclomatic complexity
E = the number of edges of the graph
N = the number of nodes of the graph
P = the number of connected components.

33Tuesday, February 28, 12

Example

34

if(c1())
 f1();
else
 f2();

if(c2())
 f3();
else
 f4();

f1 f2

f3 f4

N = 7
E = 8
M = 8 - 7 + 2*1 = 3

34Tuesday, February 28, 12

Example From http://en.wikipedia.org/wiki/Cyclomatic_complexity

What does it tell us?

35

branch coverage ≤ cyclomatic complexity ≤ number of paths

Is an upper bound for the number of test cases that are necessary to
achieve a complete branch coverage

Is a lower bound for the number of paths through the code

Cyclomatic Complexity

35Tuesday, February 28, 12

Cyclomatic Complexity & Quality

36

Higher Cyclomatic Complexity might indicate lower cohesion
One study indicated it is better indicator than metrics designed for
cohesion

Some evidence that higher Cyclomatic Complexity implies more bugs

36Tuesday, February 28, 12

NIST Structured Testing methodology

37

Split modules with cyclomatic complexity greater than 10

It may be appropriate in some circumstances to
permit modules with a complexity as high as 15

37Tuesday, February 28, 12

http://en.wikipedia.org/wiki/NIST
http://en.wikipedia.org/wiki/NIST

Eclipse Metrics 1.3.6

38

38Tuesday, February 28, 12

Eclipse Metrics Plugin

39

39Tuesday, February 28, 12

Weighted Methods per Class (WMC)

40

Sum of the McCabe Cyclomatic Complexity for all methods in a class

40Tuesday, February 28, 12

Basic Class Metrics

41

Number of methods per class
Number of static methods per class
Number of attributes(fields) per class
Number of static attributes per class

Number of parameters per method

41Tuesday, February 28, 12

Twitter4j Example

42

42Tuesday, February 28, 12

Nested Block Depth

43

The depth of nested blocks of code

 public static JSONObject toJSONObject(String string) throws JSONException {
 JSONObject o = new JSONObject();
 JSONTokener x = new JSONTokener(string);
 while (x.more()) {
 String name = Cookie.unescape(x.nextTo('='));
 x.next('=');
 o.put(name, Cookie.unescape(x.nextTo(';')));
 x.next();
 }
 return o;
 }

Depth = 2

43Tuesday, February 28, 12

Twitter4j Example

44

44Tuesday, February 28, 12

Some Inheritance Metrics

45

Depth of Inheritance Tree (DIT)
Distance from class Object in the inheritance hierarchy

Number of Children
Total number of direct subclasses of a class

Number of Overridden Methods (NORM)

Specialization Index
NORM * DIT / number of methods

If greater than 5 likely that superclass abstraction has a problem

45Tuesday, February 28, 12

Lack of Cohesion in Methods (LCOM)

46

M be the set of methods defined by the class
F be the set of fields defined by the class
r(f) be the number of methods that access field f, where f is a member of F
<r> be the mean of r(f) over F.

High Cohesion

When each method accesses all fields
<r> = |M|
LCOM = 0

Low Cohesion

When each method accesses one fields
<r> = 1
LCOM = 1

<r> - |M|

 1 - |M|

46Tuesday, February 28, 12

Some people recommend that you create an accessor for each field. When you need to access the field in the class you use the
accessor, rather than access the field directly. This will give you a LCOM of 1. One has to be careful with metrics.

Lack of Cohesion of Methods

47

47Tuesday, February 28, 12

Metrics for Stable Code

48

Dependencies make code rigid, fragile and difficult to reuse

Copy

Read
Keyboard

Write
Printer

48Tuesday, February 28, 12

Consider a program that copies characters typed on a keyboard to a printer. Rest of lecture is from OO Design Quality Metrics:
An Analysis of Dependencies, Robert Martin, http://www.objectmentor.com/resources/articles/oodmetrc.pdf

Flexible version

49

reader

writer

Copy
Reader

Writer

Keyboard
Reader

Keyboard
Reader

Have dependencies on Reader/Writer classes
But these classes are stable

49Tuesday, February 28, 12

Main Idea

50

When code depends on other classes, changes to those classes
can force the code to change

The fewer classes code depends on the stabler the code is

50Tuesday, February 28, 12

Class Categories

51

Group of highly cohesive classes that

1. The classes within a category are closed together against any force of change

2. The classes within a category are reused together

3. The classes within a category share some common function or
 achieve some common goal

If one class must change, all classes are likely to change

51Tuesday, February 28, 12

Dependency Metrics

52

Afferent Couplings (Ca)
The number of classes outside this category that depend upon
classes within this category

Efferent Couplings (Ce)
The number of classes inside this category that depend upon classes
outside this category

Instability (I)

Ce

Ca+Ce

I = 0 means a category is maximally stable

I = 1 means a category is maximally instable

52Tuesday, February 28, 12

Instabilty Twitter4j Example

53

53Tuesday, February 28, 12

How to be flexible and stable?

54

Use abstract classes

54Tuesday, February 28, 12

Abstractness (A)

55

of abstract classes in category

total # of classes in category

A = 1, all classes are abstract

A = 0, all classes are concrete

55Tuesday, February 28, 12

Main Sequence

56

1

1

Abstraction

Instability

Main Sequence

(0,1)

(1,0)

56Tuesday, February 28, 12

Distance From Main Sequence

57

Dn = | A + I - 1 |

Dn = 0 , category is on the main sequence

Dn = 1, category is far from main sequence

Values not near zero suggest restructuring the category

57Tuesday, February 28, 12

Twitter4j Example

58

58Tuesday, February 28, 12

