
CS 696 Emerging Web and Mobile Technologies
Spring Semester, 2011

Doc 19 Android Activity Life Cycle
Mar 24, 2011

Copyright ©, All rights reserved. 2011 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

Thursday, March 24, 2011

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Android Developer's Guide, http://developer.android.com/guide/index.html

CS 696 Mobile Phone Application Development, Fall 2009,
http://www.eli.sdsu.edu/courses/fall09/cs696/notes/index.html

Thursday, March 24, 2011

Examples

3

http://developer.android.com/resources/browser.html

androidInstallation/platforms/android-10/samples/ApiDemos

Source

Thursday, March 24, 2011

4

Activities & Tasks

Thursday, March 24, 2011

Android Application

5

Set of related activities

Combined into one application file (.apk)

Launch-able from the home screen

Thursday, March 24, 2011

Tasks

6

Sequence of activities the user follows to accomplish an objective

A user can
Interrupt a task to start a new task
Resume the first task where they left off

Thursday, March 24, 2011

Tasks & Applications

7

Many applications are self contained

So task is sequence of activities from the application

Some applications use activities from other applications

Use phone
Show contacts
Use Web browser
Play music

So task is sequence of activities from multiple applications

Thursday, March 24, 2011

Interrupting a Task

8

User presses Home and starts an application

Notifications

Thursday, March 24, 2011

Activity Stack

9

Back Stack

History of activities used by user

May include activities of different applications

Back button
Removes top of activity stack
Makes next activity active

Home button
Activity stack remains
Starting another application starts new activity stack

Stack only goes back to the start of the application at Home

Thursday, March 24, 2011

Sample User Flow

10

Restaurants

All

By Location

By Type

Chipolte

Star of India

Taste of Thai

AllBack ChipolteBack

5842 Hardy Ave
San Diego, CA 92115
619.265.2778
Open 11:00 AM to 10:00 PM

Map Send a Text

To Map Activity

Thursday, March 24, 2011

Activity Stack

11

Home

Restaurants

All

Chipotle

Google Maps

Activity Stack

Restaurant Activities

Maps Activities

Thursday, March 24, 2011

Multiple Activity Stacks

12

Home

Restaurants

All

Chipotle

Google Maps

Activity Stack

Month View

Day View

Launch

Calendar

Activity Stack

Thursday, March 24, 2011

Applications & Activity Stacks

13

Launching a non-running application
Create new activity stack
Put application's beginning activity on stack

Launching a running application
Show activity on top of applications activity stack
That activity may be from another application

Exceptions
Some background activities return to their initial screen

Contacts & Gallery

Some activities continue to run while in the background
Music player

Thursday, March 24, 2011

See http://developer.android.com/guide/practices/ui_guidelines/activity_task_design.html for a complete description

Activity Lifecycle States

14

Active (Resumed)
Running activity in foreground of screen

Paused
Lost focus, but still visible
Retains all state information
In extreme memory situations may be killed

Stopped
Not visible
Retains all state information
Often will be killed

Thursday, March 24, 2011

15

Thursday, March 24, 2011

Spend time on this slide

16

Saving State
When low on memory system will kill activities

In activity stack
Not visible

When user goes back to killed activity
Activity must appear as it did before it was killed

Must save state of activity
System will save state of views

Thursday, March 24, 2011

Types of State to Save

17

Dynamic instance state
State of instance variables of activity
Needed so activity object can operate

Persistent state
Information that should be available next time application is run
Contact information in Address book

Overlap
Persistent state is usually subset of dynamic state

Thursday, March 24, 2011

Saving Persistent State

18

Do it in the onPause() method

It will always be called
One method that will always be called before activity is killed

onStop)() and onDestroy() are not always called

Thursday, March 24, 2011

onStop()

19

Called when activity is no longer visible

Not always called

Thursday, March 24, 2011

onDestroy()

20

Used to free resources like threads

There are situations when
"system will simply kill the activity's hosting process
without calling this method"

Thursday, March 24, 2011

finnish()

21

Sending "finnish()" to an activity will kill the activity

Normally don't call this method

Thursday, March 24, 2011

Saving/Restoring Dynamic Instance State

22

protected void onSaveInstanceState(Bundle outState)
Called after onPause
Save data in bundle

Restore state in
onCreate or
onRestoreInstanceState

Thursday, March 24, 2011

23

Activity State Change Example

Thursday, March 24, 2011

24

Showing State Changes

Count number of times called
onPaused(), onStopped(), onDestroy()

Send to screen message from each onXXX()

Send to log a message from each onXXX()

Touch lower textfield - start web browser

Touch upper textfield - open dialog

Start up

Thursday, March 24, 2011

Web Browser for second activity

25

touch
back
button

Thursday, March 24, 2011

Web Browser for second activity

26

back
button

back
button

Thursday, March 24, 2011

Dialog

27

touch back

Thursday, March 24, 2011

Rotation

28

Thursday, March 24, 2011

29

Source Code

Thursday, March 24, 2011

onCreate

30

public class CountStates extends Activity implements View.OnTouchListener {
 int paused = 0;
 int killed = 0;
 int stopped = 0;
 TextView text;
 TextView logger;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 if (savedInstanceState != null) {
 paused = savedInstanceState.getInt("paused");
 killed = savedInstanceState.getInt("killed");
 stopped = savedInstanceState.getInt("stopped");
 }
 setContentView(R.layout.main);
 text = (EditText) this.findViewById(R.id.text);
 text.setOnTouchListener(this);
 logger = (EditText) this.findViewById(R.id.log);
 logger.setText("");
 logger.setOnTouchListener(this);
 updateText("onCreate");
 }

Thursday, March 24, 2011

Touch and upDateText

31

 public boolean onTouch(View v, MotionEvent event) {
 if (v == logger) {
 Intent web = new Intent(Intent.ACTION_WEB_SEARCH);
 web.putExtra(SearchManager.QUERY, "Roger Whitney");
 startActivity(web);
 }
 if (v == text) {
 showDialog(0);
 }
 return true;
 }

 private void updateText(String eventType) {
 Log.i("rew", eventType);
 text.setText("Paused: " + paused + " stopped: " + stopped + " killed "
 + killed);
 logger.append(eventType + "\n");
 }

Thursday, March 24, 2011

Dialog

32

protected Dialog onCreateDialog(int id) {
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Hello").setPositiveButton("Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 Toast.makeText(getApplicationContext(), "Good Bye",
 Toast.LENGTH_SHORT).show();
 }
 });
 return builder.create();
 }

Thursday, March 24, 2011

Saving Instance State

33

 protected void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 updateText("onRestoreInstanceState");
 if (savedInstanceState != null) {
 paused = savedInstanceState.getInt("paused");
 killed = savedInstanceState.getInt("killed");
 stopped = savedInstanceState.getInt("stopped");
 }
 }

 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 updateText("onSaveInstanceState");
 outState.putInt("paused", paused);
 outState.putInt("killed", killed);
 outState.putInt("stopped", stopped);
 }

Thursday, March 24, 2011

onXXX()

34

 protected void onResume() {
 super.onResume();
 updateText("onResume");
 }

 protected void onPause() {
 paused++;
 updateText("onPause");
 super.onPause();
 }

 protected void onStart() {
 super.onStart();
 updateText("onStart");
 }

 protected void onStop() {
 stopped++;
 updateText("onStop");
 super.onStop();
 }

 protected void onRestart() {
 super.onRestart();
 updateText("onRestart");
 }

 protected void onDestroy() {
 killed++;
 updateText("onDestroy");
 super.onDestroy();
 }

Thursday, March 24, 2011

