
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2009
Doc 3 Refactoring Intro

Jan 28, 2009

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

JUnit Web site: http://www.junit.org/

JUnit JavaDoc, http://kentbeck.github.com/junit/javadoc/latest/

Brian Marick’s Testing Web Site: http://www.exampler.com/testing-com/

Testing for Programmers, Brian Marick, Available at: http://www.exampler.com/testing-com/writings.html

Refactoring: Improving the Design of Existing Code, Fowler, Addison-Wesley, 1999, chapters 1 & 3

3

Unit Testing

Johnson's Law

If it is not tested it does not work

The more time between coding and testing

 More effort is needed to write tests
 More effort is needed to find bugs
 Fewer bugs are found
 Time is wasted working with buggy code
 Development time increases
 Quality decreases

Testing

4

Unit Testing

5

Tests individual code segments

Automated tests

Using print statements

Writing driver program in main

Writing small sample programs to run code

Running program and testing it be using it

What wrong with:

6

We have a QA Team, so why should I write tests?

7

First write the tests

Then write the code to be tested

Writing tests first saves time

 Makes you clear of the interface & functionality of the code

 Removes temptation to skip tests

When to Write Tests

8

Everything that could possibly break

Test values
 Inside valid range
 Outside valid range
 On the boundary between valid/invalid

GUIs are very hard to test
 Keep GUI layer very thin
 Unit test program behind the GUI, not the GUI

What to Test

9

Adapted with permission from “A Short Catalog of
Test Ideas” by Brian Marick,
http://www.testing.com/writings.html

Strings
Empty String

Collections
Empty Collection
Collection with one element
Collection with duplicate elements
Collections with maximum possible size

Numbers
Zero
The smallest number
Just below the smallest number
The largest number
Just above the largest number

Common Things Programs Handle Incorrectly

10

http://www.testing.com/writings.html
http://www.testing.com/writings.html

XUnit

11

Free frameworks for Unit testing

SUnit originally written by Kent Beck 1994

JUnit written by Kent Beck & Erich Gamma

Available at: http://www.junit.org/

Ports to many languages at:
 http://www.xprogramming.com/software.htm

XUnit Versions

12

3.x
Old version
Works with a versions of Java

4.x
Current version 4.8.1
Uses Annotations
Requires Java 5 or later

Simple Class to Test

13

public class Adder {
 private int base;
 public Adder(int value) {
 base = value;
 }

 public int add(int amount) {
 return base + amount;
 }
}

Creating Test Case in Eclipse

14

Fill in dialog window &
 create the test cases

Creating Test Case in Eclipse

15

Test Class

16

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TestAdder {

 @Test
 public void testAdd() {
 Adder example = new Adder(3);
 assertEquals(4, example.add(1));
 }

 @Test
 public void testAddFail() {
 Adder example = new Adder(3);
 assertTrue(3 == example.add(1));
 }
}

Running the Tests

17

The result

18

assertArrayEquals()
assertTrue()
assertFalse()
assertEquals()
assertNotEquals()
assertSame()
assertNotSame()
assertNull()
assertNotNull()
fail()

Assert Methods

19

For a complete list see http://kentbeck.github.com/junit/javadoc/latest/

Annotations

20

After
AfterClass
Before
BeforeClass
Ignore
Rule
Test

Using Before

21

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;

import org.junit.Before;
import org.junit.Test;

public class TestAdder {
 Adder example;
 @Before
 public void setupExample() {
 example = new Adder(3);
 }

 @Test
 public void testAdd() {
 assertEquals(4, example.add(1));
 }
}

22

Refactoring

Refactoring

23

Changing the internal structure of software without changing its observable
behavior

Done to make the software easier to understand and cheaper to modify

When to Refactor

24

Rule of three

Three strikes and you refactor

When to Refactor

25

When you add a new function
When you need to fix a bug
When you do a code review

When Refactoring is Hard

26

Databases

Changing published interfaces

Major design issues

27

When you add a feature to a program

If needed Refactor the program to make it easy to add the
feature

Then add the feature

28

Before you start refactoring

Make sure that you have a solid suite of
tests

Test should be self-checking

29

Do I need tests when I use my IDEs refactoring tools?

Are your IDE refactoring tools bug free?

30

Code Smells

Duplicate Code

31

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

Duplicate Code

32

The average method size should be less than 8 lines of code (LOC) for Smalltalk
and 24 LOC for C++

The average number of methods per class should be less than 20

The average number of fields per class should be less than 6.

The class hierarchy nesting level should be less than 6

The average number of comment lines per method should be greater than 1

Long Method - Large Class

Mark Lorenz, Object-Oriented Software Development: A Practical Guide, 1993, Appendix I Measures and
Metrics

Long Parameter List

33

a.foo(12, 2, "cat", "<tr>", 19.6, x, y, classList, cutOffPoint)

Divergent Change

34

One class is changed in different ways for different reasons

ShotGun Surgery

35

When you have to make a kind of change you
have to make a lot of little changes in different
locations

Feature Envy

36

A method seems more interested in a class other
than the on it is in.

Data Clumps

37

Same three or four data items together in lots of places

Primitive Obsession

38

Using primitive types instead of creating small classes

Switch Statements

39

How do you program without them?

Lazy Class

40

Class that is not doing enough to pay for itself

Data Class

41

Class with just fields and setter/getter methods

Data classes are like children.

They are okay as a starting point, but to participate as a grownup
object, they need to take some responsibility

Inappropriate Intimacy

42

Classes that spend too much time delving into other classes private parts

Message Chains

43

location = rat.getRoom().getMaze().getLocation()

Negative Slope

44

if (foo) {
if (bar) {

if (cat = dog) {
if (rat < 10) {

...

Temporary Field

45

Field is only used in certain circumstances

Common case
field is only used by an algorithm
Don't want to pass around long parameter list
Make parameter a field

Refused Bequest

46

Subclass does not want to support all the methods of parent class

Subclass should support the interface of the parent class

