
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2010

Doc 4 Iterator, Filters, Null Object, Object Recusion
Feb 4, 2009

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson,
Vlissides, 1995, pp. 257-271

“Null Object”, Woolf, in Pattern Languages of Program Design 3, Edited by Martin, Riehle,
Buschmmann, Addison-Wesley, 1998, pp. 5-18

Pipe & Filter References

Pattern-Oriented Software Architecture: Vol 1 A System of Patterns, Buschmann et al, Wiley, 1996,
pp 53-70.

http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html

Detailed Discussion
 http://john.cs.olemiss.edu/~hcc/softArch/notes/pipes.html

http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://john.cs.olemiss.edu/~hcc/softArch/notes/pipes.html
http://john.cs.olemiss.edu/~hcc/softArch/notes/pipes.html

Reading

3

Feb 4 - Iterator, Null Object, Pipes & Filters patterns, Introduce Null Object
Feb 9 - Visitor and Strategy patterns
Feb 11 - Decorator and Command patterns
Feb 16 - Chapter 1 of Design Patterns, Gamma, Helm, Johnson, Vlissides

4

Linked List Assignment

 Print out the strings that contain an odd number of characters.

How to satisfy the requirements and still maintain LinkedList abstraction?

5

Iterator Pattern

Provide a way to access the elements of a collection sequentially
without exposing its underlying representation

Iterator Solution

6

Java
LinkedList<Strings> strings =

new LinkedList<Strings>();

code to add strings

for (String element : strings) {
 if (element.size % 2 == 1)
 System.out.println(element);
}

Iterator<String> list = strings.iterator();
while (list.hasNext()){
 String element = list.next();
 if (element.size % 2 == 1)

 System.out.println(element);
 }
}

This is 1/2 the way to a good solution.

Ruby Iterator Examples

7

a.each {|x| puts x}

1
2
3
4

result = a.collect {|x| x + 10}
puts result

11
12
13
14

result = a.find_all {|x| x > 2 }
puts result

3
4

puts a.any? {|x| x > 2} true

puts a.detect {|x| x > 2 } 3

 a = [1, 2, 3, 4]

Ruby has a richer set of iterators than Java. Smalltalk, which inspired Ruby's iterators, has a richer set of iterators that Ruby.
Perhaps the language that replaces Ruby will match the power that Smalltalk had 20 years ago.

Ruby Solution

8

strings = LinkedList.new

code to add strings

result = strings. find_all { |element| element.size % 2 = 1 }
puts result

Better than the Java solution. We need a way to improve the Java solution.

Pattern Parts

9

Intent

Motivation

Applicability

Structure

Participants

Collaborations

Consequences

Implementation

Sample Code

Iterator Structure

10

CreateIterator()
Aggregate

CreateIterator()

ConcreteAggregate

First()

Next()

IsDone()

CurrentItem()

Iterator

return new ConcreteIterator(this)

Client

ConcreteIterator

Issue - What is the big deal?

11

var numbers = new LinkedList();

code to add numbers

Iterator list = numbers.iterator();
while (list.hasNext()) {
 Integer a = (Integer) list.next();
 int b = a.intValue();
 if ((b % 2) == 0)

 System.out.println(x);
}

var numbers = new LinkedList();

code to add numbers

for (int k =0; k < numbers.size(); k++) {
 Integer a = (Integer) numbers.get(k);
 int b = a.intValue();
 if ((b % 2) == 0)

 System.out.println(x);
}

Java's Enumerations and iterators were awkward to use. C# pushed Sun to add better syntax.

Issues - Concrete vs. Polymorphic Iterators

12

Concrete
Reader iterator = new StringReader("cat");
int c;
while (-1 != (c = iterator.read()))
 System.out.println((char) c);

Polymorphic
Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();
while (list.hasNext())
 System.out.println(list.next());

Memory leak issue in C++, Why?

Issue - Who Controls the Iteration?

13

External (Active)
var numbers = new LinkedList();

code to add numbers

Vector evens = new Vector();
Iterator list = numbers.iterator();
 while (list.hasNext()) {
 Integer a = (Integer) list.next();
 int b = a.intValue();
 if ((b % 2) == 0)
 evens.add(a);
 }

Internal (Passive)
numbers = LinkedList.new

code to add numbers

evens = numbers.find_all { |element| element.even? }

Issue - Who Defines the Traversal Algorithm

14

Object being iterated Iterator

Issue - Robustness

15

What happens when items are added/removed from the iteratee while an iterator exists?

Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();
listOfStudents.add(new Student("Roger"));

list.hasNext(); //What happens here?

16

Are Java's Input Streams & Readers Iterators?

17

Pipes and Filters

Pipes & Filters

18

ls | grep -i b | wc -l

Context
Processing data streams

Problem
Building a system that processes or transforms a stream of data

Forces
Small processing steps are easier to reuse than large components

Non-adjacent processing steps do not share information

System changes should be possible by exchanging or recombining processing steps, even by users

Final results should be presented or stored in different ways

Solution

19

Divide task into multiple sequential processing steps or filter components

Output of one filter is the input of the next filter

Filters process data incrementally

Filter does not wait to get all the data before processing

Solution Continued

20

Data source – input to the system

Data sink – output of the system

Pipes - connect the data source, filters and data sink

Pipe implements the data flow between adjacent processes steps

Processing pipeline – sequence of filters and pipes

Pipeline can process batches of data

Data
Source Pipe Filter Data

Sink
FilterPipe Pipe

Python Interpreter

21

http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential

http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential
http://wiki.cs.uiuc.edu/cs427/Python+-+Batch+Sequential

Intercepting Filter - Problem

22

Preprocessing and post-processing of a client Web request and
response

A Web request often must pass several tests prior to the main
processing
 Has the client been authenticated?
 Does the client have a valid session?
 Is the client's IP address from a trusted network?
 Does the request path violate any constraints?
 What encoding does the client use to send the data?
 Do we support the browser type of the client?

Nested if statements lead to fragile code

Intercepting Filter - Forces

23

Common processing, such as checking the data-encoding scheme or logging
information about each request, completes per request.

Centralization of common logic is desired.

Services should be easy to add or remove unobtrusively without affecting
existing components, so that they can be used in a variety of combinations,
such as

Logging and authentication

Debugging and transformation of output for a specific client

Uncompressing and converting encoding scheme of input

Intercepting Filter - Solution

24

Create pluggable filters to process common services

http://java.sun.com/blueprints/corej2eepatterns/Patterns/InterceptingFilter.html

Linked List Problem

25

Use a filter for odd sized Strings

Java
LinkedList<Strings> strings =
new LinkedList<Strings>();

code to add strings

Iterator<String> list = strings.iterator();
Iterator<Strings> odd = new OddSizeFilter(list);
while (odd.hasNext()){
 String element = list.next();
 System.out.println(element);
 }
}

Perhaps the OddSizeFilter should accept a collection, but this way we can chain them. We could create a StartsWithVowelFilter
and combine the two of them to find all odd sized strings that start with a vowel. Note that the Pipes and filters pattern is an
Architecture pattern. That is it is a pattern that talks about the architecture of a program, a way to structure the program. The
above is not doing that, we are just chaining iterators (filters).

26

Null Object

Null Object

27

Client AbstractObject

request()

RealObject

request()

NullObject

request() do nothing

NullObject implements all the operations of the real object,

These operations do nothing or the correct thing for nothing

Null Object & Binary Search Tree

28

Node

BinaryNode NullNode

Null

Node

10

5

8

20

Null

Node

Null

Node

Null

Node

Null

Node

Comparing Normal Tree with Tree with Null

29

Normal BST
public class BinaryNode {
 Node left
 Node right;
 int key;

 public boolean includes(int value) {
 if (key == value)
 return true;
 else if ((value < key) & left == null))
 return false;
 else if (value < key)
 return left.includes(value);
 else if (right == null)
 return false;
 else
 return right.includes(value);
 }
etc.
}

With Null Nodes
public class BinaryNode extends Node {
 Node left = new NullNode();
 Node right = new NullNode();
 int key;

 public boolean includes(int value) {
 if (key == value)
 return true;
 else if (value < key)
 return left.includes(value);
 else
 return right.includes(value);
 }
etc.
}

public class NullNode extends Node {
 public boolean includes(int value) {
 return false;
 }
etc.
}

Applicability

30

When to use Null Objects

Some collaborator instances should do nothing

You want clients to ignore the difference between a collaborator that does
something and one that does nothing

Client does not have to explicitly check for null or some other special value

You want to be able to reuse the do-nothing behavior so that various clients
that need this behavior will consistently work in the same way

Applicability

31

When not to use Null Objects

Very little code actually uses the variable directly

The code that does use the variable is well encapsulated

The code that uses the variable can easily decide how to handle the
null case and will always handle it the same way

Consequences

32

Advantages

Uses polymorphic classes

Simplifies client code

Encapsulates do nothing behavior

Makes do nothing behavior reusable

Disadvantages

Forces encapsulation

 Makes it difficult to distribute or mix into
the
 behavior of several collaborating objects

May cause class explosion

Forces uniformity

Is non-mutable

Implementation

33

Too Many classes

Multiple Do-nothing meanings

 Try Adapter pattern

Transformation to RealObject

 Try Proxy pattern

Refactoring: Introduce Null Object

34

You have repeated checks for a null value

Replace the null value with a null object

if (customer == null)
plan = BillingPlan.basic();

else
plan = customer.getPlan();

plan = customer.getPlan();

Create Null Subclass

35

public boolean isNull() { return false;}
public static Customer newNull() { return new NullCustomer();}

boolean isNull() { return true;}

isNull()

static newNull()

Customer

isNull()

Null Customer

Compile

Replace all nulls with null object

36

class SomeClassThatReturnCustomers {

public Customer getCustomer() {
if (_customer == null)

return Customer.newNull();
else

return _customer;
}
etc.

}

Compile

Replace all null checks with isNull()

37

if (customer == null)
plan = BillingPlan.basic();

else
plan = customer.getPlan();

if (customer.isNull())
plan = BillingPlan.basic();

else
plan = customer.getPlan();

Compile and test

What is the point of this step?

Find an operation clients invoke if not null
Add Operation to Null class

38

if (customer.isNull())
plan = BillingPlan.basic();

else
plan = customer.getPlan();

isNull()

static newNull()

getPlan()

� � 	
 � � � �

isNull()

getPlan()

� � � � � � � 	
 � � � �

class NullCustomer {
public BillingPlan getPlan() {

return BillingPlan.basic();
}

Remove the Condition Check

39

if (customer.isNull())
plan = BillingPlan.basic();

else
plan = customer.getPlan();

plan = customer.getPlan();

Compile & Test

40

Repeat last two slides for each operation
clients check if null

41

Object-Oriented Recursion

A method polymorphically sends its message to a different receiver

Eventually a method is called that performs the task

The recursion then unwinds back to the original message send

class HeadNode {
 public String toString() {
 return "(" + next.toString();
 }
}

class Node {
 public String toString() {
 return " " + element + next.toString();
 }
}

class TailNode {
 public String toString() {
 return ")";
 }
}

(3 7)

Head

Node

Node

3

Node

7

Tail

Node

Without tail recursion doing this on a long linked list could cause a stack overflow. So while it may not be a good idea to do this
on a linked list it does provide a simple example to explain the idea.

class HeadNode {
 public void add(int value) {
 next.add(value);
 }
}

class Node {
 public void add(int value) {
 if (element > value)
 prependNode(value);
 else
 next.add(value);
 }
}

class TailNode {
 public void add(int value) {
 prependNode(value);
 }
}

Head

Node

Node

3

Node

7

Tail

Node

