
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2010

Doc 7 Simple Refactoring, Decorator & Command
Feb 14, 2010

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Design Patterns: Elements of Resuable Object-Oriented Software,
Gamma, Helm, Johnson, Vlissides, Addison-Wesley, 1995, pp. 175-184, 233-242

Pattern-Oriented Software Architecture: A System of Patterns, Buschman, Meunier, Rohnert,
Sommerlad, Stal, 1996, pp. 277-290, Command Processor

Command Processor, Sommerlad in Pattern Languages of Program Design 2, Eds. Vlissides,
Coplien, Kerth, Addison-Wesley, 1996, pp. 63-74

Refactoring Tools: Fitness for Purpose, Emerson Murphy-Hill and Andrew P. Black,http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.191&rep=rep1&type=pdf

Photographs used with permission from www.istockphoto.com

3

Simple Refactoring

Eclipse Refactoring Menu

4

Rename Class

5

public class Foo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 Foo test = new Foo();
 return test.foo() + 99;
 }
}

public class NewFoo {
 public int foo() {
 return 10;
 }
}

public class Bar {
 public int bar() {
 NewFoo test = new NewFoo();
 return test.foo() + 99;
 }
}

Eclipse Rename

6

Move

7

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() { return 20; }
}

public class Bar {
 public int helperMethod(Foo test) {
 return test.foo() + test.fooTwo();
 }

 public int callHelper() {
 Foo data = new Foo();
 return helperMethod(data);
 }
}

public class Bar {
 public int callHelper() {
 Foo data = new Foo();
 return data.sum();
 }
}

public class Foo {
 public int foo() { return 10;}

 public int fooTwo() {return 20; }

 public int sum() {
 return foo() + fooTwo();
 }
}

Eclipse Move

8

Extract Class

9

Refactoring Tool Issue

10

People tend to only use the features they know

Refactoring Tool Issue

11

Is a tool hard to use because I am unfamiliar with it or is it just hard to use

Refactoring by 41 Professional Programmers

12

Number of Programmers used
Refactoring Total Times used

IntroduceFactory 1 1

PushDown 1 1

UseSupertype 1 6

EncapsulateField 2 5

Introduce Parameter 3 25

Convert Local to Field 5 37

Extract Interface 10 26

Inline 11 185

Modify Parameters 11 79

Pull up 11 37

Extract Method 20 344

Move 24 212

Rename 41 2396

From Refactoring Tools: Fitness for Purpose, Emerson Murphy-Hill and Andrew P. Black,http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.139.191&rep=rep1&type=pdf

Try In Eclipse

13

Rename
Move
Encapsulate Field
Extract Method
Extract Class

14

Decorator

Prime Directive
Data + Operations

15

Decorator Pattern

16

Adds responsibilities to individual objects

 Dynamically
 Transparently

17

import java.io.*;
import sdsu.io.*;
class ReadingFileExample
 {
 public static void main(String args[]) throws Exception
 {
 FileInputStream inputFile;
 BufferedInputStream bufferedFile;
 ASCIIInputStream cin;

 inputFile = new FileInputStream("ReadingFileExample.java");
 bufferedFile = new BufferedInputStream(inputFile);
 cin = new ASCIIInputStream(bufferedFile);

18

ConcreteDecoratorB

Component
operation()

Decorator

operation()
component

ConcreteComponent
operation()

ConcreteDecoratorA

19

20

aDecorator
component aComponent

aDecorator
component

Decorator forwards all component operations

21

22

Favor Composition over Inheritance

Refactoring: Move Embellishment to Decorator

23

Client aBinaryTree
toArray

Client aBinaryTree
toArray

anEndsInNSDecorator

toArray

Benefits & Liabilities

24

Simplifies a class
Distinguishes a classes core responsibilities from embellishments

Changes the object identity of a decorated object
Code harder to understand and debug
Combinations of decorators may not work correctly together

Benefits

Liabilities

25

Command

Command

26

Client

Invoker
Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Example
Invoker be a menu
Client be a word processing program
Receiver a document
Action be save

Encapsulates a request as an object

When to Use the Command Pattern

27

Need action as a parameter (replaces callback functions)

Specify, queue, and execute requests at different times

Undo

Logging changes

High-level operations built on primitive operations

 A transaction encapsulates a set of changes to data

 Systems that use transaction often can use the command
pattern

Macro language

Callback Function vs Command

28

Command contains reference to object that it acts on

Consequences

29

Command decouples the object that invokes the operation from the one that knows how
to perform it

It is easy to add new commands, because you do not have to change existing classes

You can assemble commands into a composite object

Refactoring: Replace Conditional Dispatcher
with Command

30

public class SDSUChatServer {
public void processClientRequest(String request) {

blah
if (command.equals("quit"))

quit();
else if (command.equals("register"))

registerNewUser(commandData);
else if (command.equals("login"))

login(commandData);
else if (command.equals("nickname"))

checkNickname(commandData);
blah

}

action = actions.get(command);
action.execute(commandData);

Refactoring to Patterns, Kerievsky, pp 191-201

Sample Command

31

public class RegisterCommand extends Command {
private SDSUChatServer target;

public RegisterCommand(SDSUChatServer aServer) {
target = aServer;

}

public void execute(String commandData) {
target.registerNewUser(commandData);

}
}

The actions table

32

public class SDSUChatServer {
private HashMap<String, Command> actions;

private populateActions() {
actions = new HashMap<String, Command>();
actions.put("quit", new QuitCommand(this));
actions.put("register", new RegisterCommand(this));
actions.put("login", new LoginCommand(this));
actions.put("nickname", new NicknameCommand(this));

}

When to do this?

33

Need runtime flexibility

Conditional Dispatcher is bloated

Pluggable Commands

34

Can create one general Command using reflection

Don’t hard code the method called in the command

Pass the method to call an argument

Java Example of Pluggable Command

35

import java.util.*;
import java.lang.reflect.*;

public class Command
 {
 private Object receiver;
 private Method command;
 private Object[] arguments;

 public Command(Object receiver, Method command,
 Object[] arguments)
 {
 this.receiver = receiver;
 this.command = command;
 this.arguments = arguments;
 }

 public void execute() throws InvocationTargetException,
 IllegalAccessException
 {
 command.invoke(receiver, arguments);
 }
 }

Using the Pluggable Command

36

public class Test {
 public static void main(String[] args) throws Exception
 {
 Vector sample = new Vector();
 Class[] argumentTypes = { Object.class };
 Method add =
 Vector.class.getMethod("addElement", argumentTypes);
 Object[] arguments = { "cat" };

 Command test = new Command(sample, add, arguments);
 test.execute();
 System.out.println(sample.elementAt(0));
 }
 }

Output
cat

37

Command Processor Pattern

Command Processor Pattern

38

Command Processor manages the command objects

The command processor:

 Contains all command objects

 Schedules the execution of commands

 May store the commands for later unto

 May log the sequence of commands for testing purposes

 Uses singleton to insure only one instance

Structure

39

Client

Command

execute()

ConcreteCommand

execute()

receiver

Receiver

action()

receiver->action()

Command

Processor

commandStack

doIt(command)
undoIt()

creates

transfer
command

performs

stores

Dynamics

40

Command
ProcessorClient

MakeBold
Command

Document

request

undo
request undoIt() undo()

delete()

restoreText()

getSelection()

makeBold()

do()
doIt()

create()

makeBold
command

Benefits

41

Flexibility in the way requests are activated

 Different user interface elements can generate the same kind of command object

 Allows the user to configure commands performed by a user interface element

Flexibility in the number and functionality of requests

 Adding new commands and providing for a macro language comes easy

Programming execution-related services

 Commands can be stored for later replay
 Commands can be logged
 Commands can be rolled back

Testability at application level

Concurrency

 Allows for the execution of commands in separate threads

Liabilities

42

Efficiency loss

Potential for an excessive number of command classes

 Try reducing the number of command classes by:

 Grouping commands around abstractions
 Unifying simple commands classes by passing the receiver object as a
parameter

Complexity

 How do commands get additional parameters they need?

