
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2010

Doc 10 Coupling
Feb 22, 2010

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Object Coupling and Object Cohesion, chapter 7 of Essays on Object-Oriented Software
Engineering, Vol. 1, Berard, Prentice-Hall, 1993, pp. 72-86

On the Criteria To Be Used in Decomposing Systems into Modules, D. L. Parnas, http://
www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

In the Beginning

3

Parnas (72) KWIC (Simple key word in context) experiment

 Read lines of words
 Output all circular shifts of all lines in alphabetical order
 Circular shift
 remove first word of line and add it to the end of the line

KWIC Solutions

4

Solution 1
Each major step in processing is a
module

Create flowchart and make each major
part a module

Solution 2
Modules based on design decisions

List design decisions that are
 Difficult
 Likely to change

Each module should hide a design decision

Solution 1
More complex
Harder to understand
Much harder to modify

Metrics for Quality

5

Coupling

Strength of interaction between objects in system

Cohesion

Degree to which the tasks performed by a single module are functionally
related

Relationships between Objects

6

Type of Relation Relation between

Uses (Object)

Containment (Object)

Inheritance (Class)

Uses

Object A uses object B if A sends a
message to B

Assume that A and B objects of different
classes

A is the sender, B is the receiver

How one object can use another

7

How does the sender access the receiver?

Containment

The receiver is a field in the sender

class Sender {
 Receiver here;

 public void method() {
 here.sendAMessage();
 }
}

How one object can use another

8

Argument of a method

The receiver is an argument in one of the sender's methods

class Sender {
 public void method(Receiver here) {
 here.sendAMessage();
 }
}

How one object can use another

9

Ask someone else

The sender asks someone else to give them the receiver

class Sender {
 public void method() {
 Receiver here = someoneElse.getReceiver();
 here.sendAMessage();
 }
}

How one object can use another

10

Creation

The sender creates the receiver

class Sender {
 public void method() {
 Receiver here = new Receiver();
 here.sendAMessage();
 }
}

How one object can use another

11

Global

The receiver is global to the sender

Coupling

12

Measure of the interdependence among modules

"Unnecessary object coupling needlessly decreases the reusability of
the coupled objects"

"Unnecessary object coupling also increases the chances of system
corruption when changes are made to one or more of the coupled
objects"

Design Goal

The interaction or other interrelationship between any two
components at the same level of abstraction within the system be as
weak as possible

Types of Modular Coupling
In order of desirability

13

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Data Coupling

14

Output from one module is the input to another
Using parameter lists to pass items between routines

Common Object Occurrence

Object A passes object X to object B
Object X and B are coupled
A change to X's interface may require a change to B

Example

class ObjectBClass{
 public void message(ObjectXClass X){
 // code goes here
 X.doSomethingForMe(Object data);
 // more code
 }
}

Data Coupling

15

Problem

Object A passes object X to object B
X is a compound object
Object B must extract component object Y out of X

B, X, internal representation of X, and Y are coupled

public class HiddenCoupling {
 public bar someMethod(SomeType x) {
 AnotherType y = x.getY();
 y.foo();
 blah;
 }
}

Example – Sorting

16

How to write a general purpose sort
Sort the same list by
 ID
 Name
 Grade

class StudentRecord {
 Name lastName;
 Name firstName;
 long ID;

 public Name getLastName() { return
lastName; }
 // etc.
}

SortedList cs635 = new SortedList();
StudentRecord newStudent;
//etc.
cs535.add (newStudent);

Attempt 1

17

class SortedList
 {
 Object[] sortedElements = new Object[properSize];

 public void add(StudentRecord X)
 {
 // coded not shown
 Name a = X.getLastName();
 Name b = sortedElements[K].getLastName();
 if (a.lessThan(b))
 // do something
 else
 // do something else
 }
 }

Attempt 2

18

class SortedList{
 Object[] sortedElements = new Object[properSize];

 public void add(StudentRecord X) {
 // coded not shown
 if (X.lessthan(sortedElements[K]))
 // do something
 else
 // do something else
 }
}

class StudentRecord{
 private Name lastName;
 private long ID;

 public boolean lessThan(Object compareMe) {
 return lastName.lessThan(compareMe.lastName);
 }
 etc.
}

Attempt 3

19

interface Comparable {
 public boolean lessThan(Object compareMe);
 public boolean greaterThan(Object compareMe);
 public boolean equal(Object compareMe);
}

class StudentRecord implements Comparable {
 blah
 public boolean lessThan(Object compareMe) {
 return lastName.lessThan(((Name)compareMe).lastName);
 }
}

class SortedList {
 Object[] sortedElements = new Object[properSize];

 public void add(Comparable X) {
 // coded not shown
 if (X.lessthan(sortedElements[K])
 // do something
 else
 // do something else
 }
 }

Attempt 4

20

interface Comparing {
 public boolean lessThan(Object a, Object b);
 public boolean greaterThan(Object a, Object b);
 public boolean equal(Object a, Object b);
}

class StudentNameCamparing implements Comparing {
 public boolean lessThan(Object a, Object b) {
 return ((Student) a).lastName() < ((Student) b).lastName(); }
 etc.
}

class SortedList {
 Object[] sortedElements = new Object[properSize];
 Comparing comparer;
 public SortedList(Comparing y) {comparer = y;}

 public void add(Comparing X) {
 // coded not shown
 if (X.lessthan(sortedElements[K])
 // do something
 else
 // do something else
 }
 }

C++ Version

21

typedef int (*compareFun) (StudentRecord, StudentRecord);
class SortedList {
 StudentRecord[] sortedElements =
 new StudentRecord[properSize];

 int (*compare) (StudentRecord, StudentRecord);

 public setCompare(compairFun newCompare)
 { compare = newCompare; }

 public void add(StudentRecord X) {
 // coded not shown
 if (compare(X, sortedElements[K]))
 // code not shown
 }
}

int compareID(StudentRecord a, StudentRecord b) { // code not shown }

int compareName(StudentRecord a, StudentRecord b) { // code not shown }

SortedList myList = new SortedList();
myList.setCompair(compareID);

Functor Pattern

22

Functors are functions that behave like objects

They serve the role of a function, but can be created, passed as
parameters, and manipulated like objects

A functor is a class with a single member function

Note 1: Functors violate the idea that a class is an abstraction with operations and state. Beginners should avoid using the
Functor pattern, as they can lead to bad habits. The functor pattern is used here only as a last resort.

Note 2: The Command pattern is similar to the Functor pattern, but contains operations and state.

Types of Coupling

23

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Control Coupling

24

Passing control flags between modules so that one module controls the sequencing of the
processing steps in another module

Common Object Occurrence
A sends a message to B
B uses a parameter of the message to decide what to do

class Lamp {
 public static final ON = 0;

 public void setLamp(int setting) {
 if (setting == ON)
 //turn light on
 else if (setting == 1)
 // turn light off
 else if (setting == 2)
 // blink
 }
}

Lamp reading = new Lamp();
reading.setLamp(Lamp.ON);
reading.setLamp)(2);

Cure

25

Decompose the operation into multiple primitive
operations

class Lamp {
 public void on() {//turn light on }
 public void off() {//turn light off }
 public void blink() {//blink }
}

Lamp reading = new Lamp();
reading.on();
reading.blink();

Is this Control Coupling

26

class BankAccount {
 public void withdrawal(Float amount) {
 balance = balance - amount;
 }
etc.

Is this Control Coupling

class BankAccount {
 public void withdrawal(Float amount) {
 if (balance < amount)
 this.bounceThisCheck();
 else
 balance = balance - amount;
 }
etc.

27

What if the Lamp had 50 settings?

Control Coupling

28

Common Object Occurrence

A sends a message to B
B returns control information to A

Example: Returning error codes

class Test {
 public int printFile(File toPrint) {
 if (toPrint is corrupted)
 return CORRUPTFLAG;
 blah blah blah
 }
}

Test when = new Test();
int result = when.printFile(popQuiz);
if (result == CORRUPTFLAG)
 blah
else if (result == -243)

Cure – Use Exceptions

29

How does this reduce coupling?

class Test {
 public int printFile(File toPrint) throws PrintException
{
 if (toPrint is corrupted)
 throws new PrintException();
 blah blah blah
 }
}

try {
 Test when = new Test();
 when.printFile(popQuiz);
}
catch (PrintException printError) {
 do something
}

Types of Coupling

30

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Global Data Coupling

31

Global Data is evil

Global Data Coupling

32

What are the following?

System.out
Integer.MAX_VALUE

Types of Global Data Coupling in increasing order of "badness"

33

Make a reference to a specific external object

Make a reference to a specific external object, and to methods in the external object

A component of an object-oriented system has a public interface which consists of items
whose values remain constant throughout execution, and whose underlying structures/
implementations are hidden

A component of an object-oriented system has a public interface which consists of items
whose values remain constant throughout execution, and whose underlying structures/
implementations are not hidden

A component of an object-oriented system has a public interface which consists of items
whose values do not remain constant throughout execution, and whose underlying
structures/implementations are hidden

A component of an object-oriented system has a public interface which consists of items
whose values do not remain constant throughout execution, and whose underlying
structures/implementations are not hidden

Types of Coupling

34

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Internal Data Coupling

35

One module directly modifies local data of another module

Common Object Occurrences
C++ Friends
Smalltalk reflection
Java reflection

Internal Data Coupling

36

Implement a debugger without using internal data coupling

Types of Coupling

37

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling (strongest – least
desirable)

Content Coupling (Unrated)

Lexical Content Coupling

38

Some or all of the contents of one module are included in the contents of
another

Common Object Occurrence

C/C++ header files

Decrease coupling by
 Restrict what goes in header file
 C++ header files should contain only class interface specifications

