
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2010

Doc 23 CRC Cards
29 Apr 2010

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Wirfs-Brock, Designing Object-Oriented Software, 1990, Prentice Hall, chapters 1- 5

Mark Lorenz, Object-Oriented Software Development: A Practical Guide , 1993,
Appendix I Measures and Metrics

Wikipedia

Software Development Process

3

Structure imposed on the development of a software product

Software Process

From Wikipedia http://en.wikipedia.org/wiki/Software_life_cycle

Software Development Activities

4

Requirements
Design
Implementation
Testing
Maintenance

Waterfall Methods

5

Requirements

Design

Implementation

Testing

Maintenance

The waterfall method was first described in a paper by Winston W. Royce in 1970. In this paper Royce points out bad this method
is. However for decades the paper was cited in support of using waterfall methods. Recently his son read the paper and pointed
out that his father was against this method

Software development is a learn process

6

What should it do

What is the design

How to make it work

That was the wrong way

Learning is non-linear

Software development is a Group process

7

Large groups of people need structure to function

Iterative Methods

8

Initial

Planning
Planning

Requirements
Analysis & Design

Implementation

Deployment

TestingEvaluation

Image from http://en.wikipedia.org/wiki/Iterative_and_incremental_development

Rational Unified Process (RUP)

9

Formal software process

Heavy weight

Developed by Rational Software

Unified three existing OO software processes

Unified Modeling Language (UML)
Diagrams to support design

Contains
3 building blocks
4 project lifecycle phases
6 engineering disciplines

Process is highly configurable

Agile Manifesto

10

Individuals and interactions

Working software

Customer collaboration

Responding to change

processes and tools

comprehensive documentation

contract negotiation

following a plan

Value these Over these

Agile Methodologies

11

Scrum
Extreme Programming (XP)

Short development cycle
1-4 weeks

Plan only for current cycle

Customer specifies priorities for cycle

Working software at end of cycle

Why so many Processes?

12

People operate differently

Companies operate differently

Projects are different

Customers have different requirements

13

One OO Design Process

Exploratory Phase

Who is on the team?
What are their tasks, responsibilities?
Who works with whom?

Analysis Phase

Who's related to whom?
Finding sub teams
Putting it all together

This is known as the Responsibility-Driven process. See the Wirfs-Brock book listed in the references.

Exploratory Phase

14

What are the goals of the system?
What must the system accomplish?
What objects are required to model the system and accomplish the goals?

Finding the initial list of classes for the system

Who is on the team?

Exploratory Phase

15

What does each object have to know in order to accomplish its tasks?
What steps toward accomplishing each goal is it responsible for?

Candidate list of fields and methods

What are their tasks, responsibilities?

Exploratory Phase

16

With whom will each object collaborate in order to accomplish each of its responsibilities?
What is the nature of the objects' collaboration?

How do the objects interact

Who works with whom?

Finding Classes

17

Noun phrases in requirements specification or system description

Model physical objects

Disks Printers Airplanes

Model conceptual entities that form a cohesive abstraction

 Window File Bank Account

If more than one word applies to a concept select the one that is most meaningful

Look at these phrases. Some will be obvious classes, some will be obvious nonsense, and some will fall between obvious and
nonsense. Skip the nonsense, keep the rest. The goal is a list of candidate objects. Some items in the list will be eliminated,
others will be added later. Finding good objects is a skill, like finding a good functional decomposition.

Finding Classes

18

Be wary of the use of adjectives
Adjective-noun phrases may or may not indicate different objects
Is selection tool different than creation tool?
Is start point different from end point from point?

Be wary of passive voice
A sentence is passive if the subject of the verb receives the action
Passive:

The music was enjoyed by us
Active:

We enjoyed the music

Model categories of classes
Categories may become abstract classes
Keep them as individual classes at this point

Finding Classes

19

Model known interfaces to outside world
User interfaces
Interfaces to other programs

Write a description of how people will use the system. This description is a source
of interface objects.

Model the values of attributes, not the attributes themselves
Height of a rectangle
Height is an attribute of rectangle
Value of height is a number
Rectangle can record its height

Categories of Classes

20

Data Managers
Principle responsibility is to maintain data
Examples: stack, collections, sets

Data Sinks or Data Sources
Generate data or accept data and process it further
Do not hold data for long
Examples: Random number generator, File IO classes

View or Observer classes
Example: GUI classes

Facilitator or Helper classes
Maintain little or no state information
Assist in execution of complex tasks

Record Your Candidate Classes

21

Class: Account

An account representing a

customer's account in the

bank's database

Record the class name on the front of an index card. One class per card. Write a brief description of the overall purpose of the
class. The front of the card will be filled in with information as the design process continues. If you prefer to use some other
medium (8 1/2" by 11" sheets of paper, computer program) do so. The goal is a tool that will enhance exploring the model.
Once you are experienced with object-oriented design, you may find better tools. However, while learning, it is hard to find a
cheaper tool than index cards. Even when you have a fancy case tool you might find yourself using these cards to help with
designing parts of programs.

Finding Abstract Classes

22

An abstract class springs from a set of classes that share a useful attribute.
Look for common attributes in classes, as described by the requirement

Grouping related classes can identify candidates for abstract classes

Name the superclass that you feel each group represents

Record the superclass names

Subclass name
Superclass name

Class: Drawing

Finding Abstract Classes

23

If you can't name a group:
List the attributes shared by classes in the group and derive
the name from those attributes
Divide groups into smaller, more clearly defined groups

If you still can't find a name, discard the group

Responsibilities

24

The knowledge an object maintains

The actions an object can perform

General Guidelines

Consider public responsibilities, not private ones

Specify what gets done, not how it gets done

Keep responsibilities in general terms

Define responsibilities at an implementation-independent level

Keep all of a class's responsibilities at the same conceptual level

Identifying Responsibilities

25

Requirements specification
Verbs indicate possible actions
Information indicates object responsibilities

The classes
What role does the class fill in the system?
Statement of purpose for class implies responsibilities

Walk-through the system
Imagine how the system will be used
What situations might occur?
Scenarios of using system

Scenarios

26

Scenario
A sequence of events between the system and an outside agent, such as a user, a
sensor, or another program
Outside agent is trying to perform some task

The collection of all possible scenarios specify all the existing ways to use the
system

Normal case scenarios
Interactions without any unusual inputs or error conditions

Special case scenarios
Consider omitted input sequences, maximum and minimum values, and repeated
values
Error case scenarios
Consider user error such as invalid data and failure to respond

Identifying Scenarios

27

Read the requirement specification from user's perspective

Interview users of the system

Normal ATM Scenario

28

The ATM asks the user to insert a card; the user inserts a card.

The ATM accepts the card and reads its serial number.

The ATM requests the password; the user enters "1234."

The ATM verifies the serial number and password with the ATM consortium; the
consortium checks it with the user's bank and notifies the ATM of acceptance.

The ATM asks the user to select the kind of transaction; the user selects "withdrawal."

The ATM asks the user for the amount of cash; the user enters "$100."

The ATM verifies that the amount is within predefined policy limits and asks the
consortium to process the transaction; the consortium passes the request to the bank,
which confirms the transaction and returns the new account balance.

The ATM dispenses cash and asks the user to take it; the user takes the cash.

The ATM asks whether the user wants to continue; the user indicates no.

The ATM prints a receipt, ejects the card and asks the user to take them; the user takes
the receipt and the card.

The ATM asks a user to insert a card.

Special Case ATM Scenario

29

The ATM asks the user to insert a card; the user inserts a card.

The ATM accepts the card and reads its serial number.

The ATM requests the password; the user enters "9999."

The ATM verifies the serial number and password with the ATM consortium; the
consortium checks it with the user's bank and notifies the ATM of rejection.

The ATM indicates a bad password and asks the user to reenter it; the user hits
"cancel."

The ATM ejects the card and asks the user to take it; the user takes the card.

The ATM asks a user to insert a card.

Assigning Responsibilities

30

Assign each responsibility to the class(es) it logically belongs to

Evenly Distribute System Intelligence

Intelligence:
What the system knows
Actions that can be performed
Impact on other parts of the system and users

Example: Personnel Record
Dumb version

A data structure holding name, age, salary, etc.

Smart version
An object that:
Matches security clearance with current project
Salary is in proper range
Health benefits change when person gets married

Evenly Distribute System Intelligence

31

The extremes:
A dictator with slaves
Dumb data structure with all intelligence in main program and few procedures
Class with no methods
Class with no fields

Object utopia
All objects have the same level of intelligence

Reality
Closer to utopia than to dictator with slaves

Reality check
Class with long list of responsibilities might indicate budding dictator

Metric Rules of Thumb

32

The average method size should be less than
8 lines of code (LOC) for Smalltalk
24 LOC for C++

Bigger averages indicate object-oriented design problems

The average number of methods per class should be less than 20

Bigger averages indicate too much responsibility in too few classes

The average number of fields per class should be less than 6.

Bigger averages indicate that one class is doing more than it should

The class hierarchy nesting level should be less than 6

Start counting at the level of any framework classes you use or the root class
if you don't

From Mark Lorenz, Object-Oriented Software Development: A Practical Guide , 1993, Appendix I Measures and
Metrics

Assigning Responsibilities

33

State responsibilities as generally as possible

Assume that each kind of drawing element knows how to draw itself. It is better to
say "drawing elements know how to draw themselves" than "a line knows how to
draw itself, a rectangle knows how to draw itself, etc."

Keep behavior with related information

Abstraction implies we should do this

Keep information about one thing in one place

If two or more objects need the same information:
Create a new object to hold the information
Collapse the objects into a single object
Place information in the more natural object

Share Responsibilities

34

Who is responsible for updating screen when window moves?

Examining Relationships Between Classes

35

is-kind-of or is-a
Implies inheritance
Place common responsibilities in superclass

is-analogous-to
If class X is-analogous-to class Y then look for superclass

is-part-of or has-a
If class A is-part-of class B then there is no inheritance
Some negotiation between A and B for responsibilities may be needed

Example:
Assume A contains a list that B uses
Who sorts the list? A or B?

Common Difficulties

36

Missing classes

A set of unassigned responsibilities may indicate a need for another class

Group related unassigned responsibilities into a new class

Arbitrary assignment

Sometimes a responsibility may seem to fit into two or more classes

Perform a walk-through the system with each choice

Ask others

Explore ramifications of each choice

If the requirements change then which choice seems better?

Relations

37

employer

Mr. White All Smart

Mr. White All Smart

employee

Model View

38

Mr. White All Smart

works-for

salary

job title

N 1

If need both directions

39

employer

Mr. White All Smart

employee

Two Pointers

If need both directions

40

Mr. White All Smart

works-for

Recording Responsibilities

41

List responsibilities

here

Class: Drawing

Know which

elements it contains

Maintain ordering

between elements

Class: Drawing

Collaboration

42

Represents requests from a client to a server in fulfillment of a client responsibility

Interaction between objects

Finding Collaborations

43

Examine class responsibilities for dependencies

For each responsibility:
Is class capable of fulfilling this responsibility?
If not, what does it need?
From what other class can it acquire what it needs?

For each class:
What does this class do or know?
What other classes need the result or information?
If class has no interactions, discard it

Finding Collaborations

44

Examine scenarios

Interactions in the scenarios indicate collaboration

Common Collaboration Types

45

The is-part-of relationship

X is composed of Y's
Composite classes
Drawing is composed of drawing elements

Some distribution of responsibilities required

Container classes
Arrays, lists, sets, hash tables, etc.
Some have no interaction with elements

Recording Collaborations

46

Know which

elements it contains

Maintain ordering

between elements

Class: Drawing

Drawing

element

