
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2010

Doc 21 Metadata and Active Object-Models
22 Apr 2010

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this
document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

Metadata and Active Object Models, Foote & Yoder, http://hillside.net/plop/plop98/final_submissions/
P59.pdf

The User-Defined Product Framework, Johnson & Oakes, http://st-www.cs.illinois.edu/users/johnson/
papers/udp/UDP.pdf

Daily Quote

3

Lowering quality lengthens development time

G. Weinberg

First Law of Programming

Metaprogramming

4

"Writing of computer programs that write or manipulate
other programs (or themselves) as their data"

Wikipedia

Metaprogramming. (2010, April 11). In Wikipedia, The Free Encyclopedia. Retrieved 03:29, April 22, 2010, from http://
en.wikipedia.org/w/index.php?title=Metaprogramming&oldid=355399719

Metadata & Active Object-Models

5

Complexity
Generality
Flexibility
Configurability

Pattern Language

6

Value Holder/Smart Values
Metaclass
Idempotence
Synthetic Code
Code As Data
Causal Connection
Boostrapping

Property
Smart Variables
Schema/Descriptor
Active Object-Model

Parameterization
Configuration
Expressions
Scripts
Dialogs
Tables
Specs
Message Routing
Context
Namespaces
Editor
Visual Builder
Dynamic Validation
History

7

Property Pattern

Property

8

Attributes
Annotations
Dynamic Slots
Property List

How do you allow individual objects to augment their state at runtime

Therefore, provide runtime mechanisms for accessing, altering, adding, and
removing properties or attributes at runtime

What is a Property?

9

Key (Indicator) - name of the property

Value - the value of the property

Descriptor - information about property
display name, type, constraints
default value, accesor functions, etc

Indicates how to downcast
Used by tools

Java Fake Example

10

class Example {
HashMap<String,Object> properties = new Hashmap<String, Object>();

public void setProperty(String name, Object value) {
properties.put(name, value);

}

public Object getProperty(String name) {
return properties.get(name);

}

public boolean hasProperty(String name) {
return properties.containsKey(name);

}

Some Property methods

11

void addProperty(Indicator name, Descriptor aboutProperty, Object value);
void removeProperty(Indicator name);
boolean hasProperty(Indicator name);
void setProperty(Indicator name, Object value);
Object getProperty(Indicator name);

Decriptor getDescriptor(Indicator name);
Descriptor[] getDescriptors();
Object[] propertyList();

Java Properties Class

12

Properties defaults = new Properties();
defaults.put("a", "one");
defaults.put("b", 'two");

Properties test = new Properties(defaults);
test.put("c", "three");
test.put("a", "override a default");

test.get("a");
test.get("b");
test.get("d");

Chain of Responsibility, Flyweight

Consequences

13

You avoid a proliferation of subclasses

Fields may be added to individual instances

Fields may be added and removed at runtime

You may iterate across the fields

Metainformation is available to facilitate editing and debugging

Properties can graduate to first-class fields as an application evolves.

Consequences

14

Syntax is more cumbersome in the absence of reflective support

Property access code is more complex that that for real fields

Reflective mechanisms, where they are available, can be slower

Idiomatic implementations, when reflective support is not available, are also slow

Access to heterogeneous collections can be expensive

A field must be added to all objects, while only a few ever use it

15

The User-Defined Product Framework

The User-Defined Product Framework

16

Let users
Construct a complex business object from existing components
Define a new kind of component without programming

Insurance managers can invent a new policy rider

Framework developed at ITT Hartford
Used to represent insurance policies

Problem

17

Which is the best way to combine features, multiple inheritance or composition?

Use object composition to combine features instead of multiple inheritance.

Need 10,000 classes to get all the combinations needed

Solution - Composition

18

Policy
Auto
Collision
Auto
Home
Flood

Component

deductible
maximum

Flood
deductible
maximum

Collision Composite

owner
address

Policy
value
type
address

Home
value
make
year

Auto

Problem

19

Design is still complex and hard to use

a huge number of Component classes

adding a feature means making a new one

Component has too many subclasses.
How can we keep from having to subclass Component?

Solution - Properties (Variable State)

20

name
value
type

Attribute

Component

Flood Collision Composite

Policy Home Auto

Eliminate the need to subclass to add instance variables by storing attributes in a dictionary
instead of directly in an instance variable.

Problem

21

name
value
type

Attribute

Component

Flood Collision Composite

Policy Home Auto

Still have subclasses for behavoir

Solution - Strategy

22

Make a Strategy for each method of Component that varies in its subclasses.

name
value
type

Attribute

Composite ValueStrategy

VSum VHome VAutoEditStrategy

ESum EHome EAuto

container

Problem

23

But now instead of lots of component subclasses

We have lots of Strategy subclasses

Solution - Interpreter

24

Create small language for the behaviors of strategies

Value strategies use:
arithmetic expressions
table look up
if statements

Solution - Interpreter

25

name
value
type

Attribute

Composite

TableLookup

container

ValueWith:

Rule

name
AttributeRef

value
Constant

operation
BinaryOp

Rules
read/write attributes
pre-formula

evaluated before component's children
post-formula

evaluated after component's children

Problem

26

Component subclass replaced with attributes & rules

Each "component" instance has own copy of rules - duplication

Without classes to categorize components
harder to understand code

How can you eliminate duplication in a component system and represent
categories of similar components when all components have the same
class?

Solution - Type Object

27

Use the Type Object pattern; i.e. make objects that represent the common
features of a category of components, and let each component know its
type and access those features by delegating to the type

Component ComponentType

TableLookup

children

ValueWith:

Rule

name
AttributeRef

value
Constant

operation
BinaryOp

name
type

AttributeType
value
Attribute

children

typeinstance

Talk about editors and database of types

Problem

28

Sometimes attributes need to have rules

Life insurance over $1,000,000 has special data and rules

Most attributes don't have rules so why add that option to all attributes

Solution - Decorator

29

AttributeDecorator - adds rule to attribute

Paper also covers several other patterns used

30

Smart Variable

31

Issue

Often when a field changes some action is required

Most of the time accessor methods handle this fine

Examples when not

Debugger - watch points
Simulations
Real-time tracking of business

Actions tied to State Change

32

Dependent Notification
Persistence
Distribution
Caching
Constraint Satisfaction
Synchronization

33

Schema

34

Schema
Descriptor
Map
Database Scheme
Layout

How do you avoid hard-wiring the layouts of structures into your code?
How do you describe the layout of a structure, object, or database row?

Therefore, make a schema or map describing your data structures available at runtime

Participants

35

Schema - collection of descriptors

Descriptor - describe layout of element
May contain attributes

display name, type, default value

Subject - objects being mapped by schema

Grapples - map between symbolic name to actual object

Attributes

Examples

36

Database Object-Relational mapping
Hibernate, Spring, Active Record in Ruby on Rails

GUI Builders

JavaBeans - Descriptor

