
CS 635 Advanced Object-Oriented Design and Programming
Spring Semester, 2010

Assignment 3
Assignment Index

© 2010, All Rights Reserved, SDSU & Roger Whitney 
 San Diego State University -- This page last updated 3/26/10

In-Memory Database with Persistence

Due April 13

1. We will create an in-memory database for a video store inventory. The video story sells 
movie DVDs. Each movie has a name, price, unique id and a quantity. The store uses se-
quential integers for unique ids. We need to be able to 

• Add new movies.
• Sell a movie in the inventory.
• Add new copies of existing movies
• Change the price of a movie
• Find the price and/or quantity of a movie by either name or id. 

Create an Inventory class (you may need other classes) to keep track of the store inven-
tory.

The problem with Inventory class as a database is that it does not persist. Once your program 
stops running all data is lost.

2. Use the memento pattern to copy the data in an Inventory object. Make the memento seri-
alizable so it can be saved in a file. Given an Inventory object and a memento you can re-
store the Inventory object to a previous state. Given that a program may have many refer-
ences to the Inventory object you can't just replace the Inventory object with the memento.

So now we can periodically create and save a memento of the Inventory object. But the me-
mento can become rather large. (Inventory is just an example. If we were doing this for real our 
data could be 100's of megabytes.) So we would not want to save it after each operation. 

3. For each operation that changes the state of the Inventory object create a command. Make 
the commands serializable. Keep in mind that we don't want to serialize the Inventory ob-
ject each time we serialize a command. Also when we deserialize a command object we 
will have it operation on the Inventory object that is in-memory, which is likely not to be the 
same Inventory object that the command first operated on.

Now every time we perform an operation on an Inventory object, we can create a command, 
perform the command and save the command to disk. This way we will have a history of all the 
operations. If our program were to crash we can recover the last state by first loading the last 
memento and then replaying all the commands done since the last memento was created. 
Since the commands will always be small, which is not the case with the Inventory object, sav-
ing it to disk each time will not be very expensive. After a while the number of commands may 
get very large. When this happens one can create a new memento, save it to disk and remove 
the old commands. Of course this needs to be done in a safe manner. That is one must make 

http://www.eli.sdsu.edu/courses/spring09/cs635/assignments/index.html
http://www.eli.sdsu.edu/courses/spring09/cs635/assignments/index.html


sure that the new memento is saved on disk before removing the old one and removing the old 
commands.

4. Create a proxy(s) for Inventory objects. For every operation that changes the Inventory ob-
ject's state the proxy will create the command, perform the command and save the com-
mand to a file. 

However having to create those commands each time we want to perform an operation can be 
annoying. The proxy should make this transparent to the client code.

5. Instead of creating proxy(s) you might be tempted to make the Inventory class create the 
commands, execute the commands and save them. Why is the proxy a better idea.

Grading

Item Percent of Grade

Working Code 20%

Unit Tests 10%

Proper implementation of Patterns 60%

Quality of Code 10%


