
CS 635 Advanced Object-Oriented Programming
Spring Semester, 2007

Assignment 2
© 2010, All Rights Reserved, SDSU & Roger Whitney

 San Diego State University -- This page last updated 2/12/10

Assignment 2
Due Feb. 25

This assignment will build on assignment one.

1. Review your units tests for adding elements to the binary tree from assignment 1. Make
sure that the tests adequately test adding elements to the tree and obtaining the elements
in the tree that end in 'n' or 's'. Record those tests. When you are done with the assignment
determine how good the tests were. That after making the changes required in this assign-
ment you were confident that worked after running the tests. Did you have add to or modify
your tests?

2. Refactor your tree code to use standard names for methods, remove helper methods on
the tree that deal with tree nodes, and any other clean up you feel is needed in your code.
You will still need the helper method for finding strings ending in 'n' or 's'. You might find the
refactorings rename and move useful here. In Eclipse these refactorings can be found in
the Refactoring menu.

3. The binary search tree class in assignment one is a collection. Determine the correct loca-
tion in your language’s collection class hierarchy. Find all methods that you need to imple-
ment in-order to add your class in the language’s collection class hierarchy. (C++ people
get a pass on this problem as STL is painful to subclass.) Note we will only be interested in
implementing one of these methods - see problem 4.

4. Make the parent class of your binary search tree the parent determined in problem 1. Re-
name your existing methods to conform to the collection classes standards. One may need
to stub some methods to satisfy the parent class's constraints.

5. Use the Null Object pattern to add a null node to your tree to eliminate the need to check
for null references or pointers in your tree.

6. Implement an iterator for your binary search tree. It is tempting to convert the tree into a
collection and the then use the iterator from the collection. This is a quick trick that can be
useful. However the point of this assignment is to help us understand how to implement
patterns, which this trick will not help us do. So don’t use the trick. Ruby people can use an
internal iterator if they wish, but may find it instructional to implement an external iterator.

7. Implement what we will for now will call EndsInIterator. Using Java syntax the class will
have the methods given below. One temptation here is to read all the elements into a col-
lection and then return an iterator on that collection. This assumes that all the elements we
are iterating over are all available at one time and will fit into memory. This is not always the
case, for example one may be iterating over elements in a very large file. So do not use this
trick either. C#, Ruby and C++ people may need to implement different methods to conform
to their language's conventions.

EndsInIterator(Iterator input, char[] endings) - constructor

boolean hasNext() - returns true if the iteration has more elements that end with one of
the characters in endings.

next() - returns the next element in the iteration that ends with one of the characters in
the array endings.

Grading

Item Percent of Grade

Working Code 15%

Unit Tests 10%

Proper implementation of Patterns 60%

Quality of Code 15%

Proper implementation of Patterns. The goal of the assignment is to better understand the it-
erator and null object patterns. So 60% of your grade is on producing a proper implementation
of the patterns.

What to Turn in

Turn in hard copy of your code and unit tests. Do not turn in Question for Thought listed below.

Late Policy

The penalty for turning in the assignment late is 3% of the grade per day. Once solutions to the
assignment have been posted or discussed in class no more late assignments will be ac-
cepted.

Questions for Thought

1. Internal iterators have proven very useful in Smalltalk, yet do not exist in C++ or Java. How
would you implement an internal iterator in C++ or Java? How easy would it be to use your
internal iterator? For C++ take a look at the Boost Lambda library.

2. What do you see as the advantages and disadvantages of using the null object pattern in
the binary search tree?

3. One problem with external iterators is that collection you are iterating over can change
while the iterator still exists. This can put the iterator in an undefined state. (How?) One so-
lution is to make the iterator robust, that is ensure that insertions and deletions do not
change interfere with the iterator. (see page 261 of the text). How would you make your it-
erator robust?

4. Java introduced fail-safe external iterators in JDK 1.2. These iterators allow the collection
being iterated over to be changed by the iterator. However, if the collection is changed not
using the iterator then the next time you call a method on the iterator an exception is
thrown. How would you implement a fail-safe iterator?

5. Which type of external iterator is better a robust or fail-safe? Why?

6. How would you implement a factory method to return a polymorphic external iterator? What
is the advantage of doing this?

7. The text states that polymorphic iterators in C++ must be on the heap. Explain why this is
true.

8. In Smalltalk one can use the method become: to turn object A into object B. That is object A
will become an instance of the B's class. All previous references anywhere in your program
to B will be changed to refer to A. B will be turned into a instance of A' class and all previ-
ous references to A will now refer to B. Is this possible in Java or C++?

9. One of the listed disadvantages on the NullObject pattern is that NullObject objects can not
transform themselves into a RealObject. Does the become: method negate this disadvan-
tage in Smalltalk?

