
CS 580 Client-Server Programming
Spring Semester, 2010

Doc 8 Threads
17 Feb, 2010

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

2

The Java Programming Language, 2nd Ed. Arnold & Gosling, Addison-Wesley, 1998

The Java Language Specification, Gosling, Joy, Steele, Addison-Wesley, 1996, Chapter 17
Threads and Locks.

Java 1.6.0 on-line documentation http://java.sun.com/javase/6/docs/api/

Cancellable Activities, Doug Lea, October 1998, http://gee.cs.oswego.edu/dl/cpj/cancel.html

Concurrent Programming in Java: Design Principles and Patterns, Doug Lea, Addison-Wesley,
1997

Java's Atomic Assignment, Art Jolin, Java Report, August 1998, pp 27-36.

http://gee.cs.oswego.edu/dl/cpj/cancel.html
http://gee.cs.oswego.edu/dl/cpj/cancel.html

Concurrent Programming

3

Safety

Liveness

Nondeterminism

Communication

Processes verses Threads

4

Processes (Heavy Weight)
Child process gets a copy of parent’s variables
Relatively expensive to start
No concurrent access to variables

Thread (Light Weight Process)
Child process shares parents variables
Relatively cheap to start
Concurrent access to variables is an issue

Creating Threads by Inheritance

5

class ExtendingThreadExample extends Thread {
 public void run() {
 for (int count = 0; count < 4; count++)
 System.out.println("Message " + count +
 " From: Mom");
 }

 public static void main(String[] args) {
 ExtendingThreadExample parallel =
 new ExtendingThreadExample();
 System.out.println("Create the thread");
 parallel.start();
 System.out.println("Started the thread " + parallel.getId()););
 System.out.println("End");
 }
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 2 From: Mom
Message 3 From: Mom
Started the thread 7
End

Creating Threads by Composition

6

class SecondMethod implements Runnable {
 public void run() {
 for (int count = 0; count < 4; count++)
 System.out.println("Message " + count +
 " From: Dad");
 }

 public static void main(String[] args) {
 SecondMethod notAThread = new SecondMethod();
 Thread parallel = new Thread(notAThread);

 System.out.println("Create the thread");
 parallel.start();
 System.out.println("Started the thread");
 System.out.println("End");
 }
}

Output
Create the thread
Message 0 From: Dad
Message 1 From: Dad
Message 2 From: Dad
Message 3 From: Dad
Started the thread
End

Thread with a Name

7

public class WithNames implements Runnable {
 public void run() {
 for (int count = 0; count < 2; count++)
 System.out.println("Message " + count +
 " From: " +
Thread.currentThread().getName());
 }

 public static void main(String[] args) {
 Thread a = new Thread(new WithNames(),
"Mom");
 Thread b = new Thread(new WithNames(),
"Dad");

 System.out.println("Create the thread");
 a.start();
 b.start();
 System.out.println("End");
 }
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 0 From: Dad
Message 1 From: Dad
End

Ruby Threads

8

a = Thread.new { 4.times {|k| puts k} }
a.join

Output
0
1
2
3

x = 5
a = Thread.new(x) do |size|
 size.times {|k| puts k}
end
a.join

Output
0
1
2
3
5

For Future Examples

9

public class SimpleThread extends Thread {
 private int maxCount = 32;

 public SimpleThread(String name) {
 super(name);
 }

 public SimpleThread(String name, int repetitions) {
 super(name);
 maxCount = repetitions;
 }

 public SimpleThread(int repetitions) {
 maxCount = repetitions;
 }

 public void run() {
 for (int count = 0; count < maxCount; count++) {
 System.out.println(count + " From: " + getName());
 }
 }
}

Some Parallelism

10

public class RunSimpleThread {
 public static void main(String[] args) {
 SimpleThread first = new
SimpleThread(5);
 SimpleThread second = new
SimpleThread(5);
 first.start();
 second.start();
 System.out.println("End");
 }
}

Output On Rohan
End
0 From: Thread-0
1 From: Thread-0
2 From: Thread-0
0 From: Thread-1
1 From: Thread-1
2 From: Thread-1
3 From: Thread-0
3 From: Thread-1
4 From: Thread-0
4 From: Thread-1

Java on a Solaris machine with multiple processors can run threads on different processors

Thread Scheduling

11

Priorities

Time-slicing

Priorities

12

Each thread has a priority

If there are two or more active threads
 If one has higher priority than others
 The higher priority thread is run until it is done or not active

java.lang.Thread field Value

Thread.MAX_PRIORITY 10

Thread.NORM_PRIORITY 5

Thread.MIN_PRIORITY 0

Any float between
 -2147483649
 2147483648

May be machine dependent

Java Thread
Priorities

Ruby Thread
Priorities

Java Priority

13

public class PriorityExample {
 public static void main(String[] args) {
 SimpleThread first = new SimpleThread(5);
 SimpleThread second = new SimpleThread(5);
 second.setPriority(8);
 first.start();
 second.start();
 System.out.println("End");
 }
} On Single Processor

0 From: Thread-5
1 From: Thread-5
2 From: Thread-5
3 From: Thread-5
4 From: Thread-5
0 From: Thread-4
1 From: Thread-4
2 From: Thread-4
3 From: Thread-4
4 From: Thread-4
End

On Multiple Processor Rohan
End
0 From: Thread-3
1 From: Thread-3
2 From: Thread-3
0 From: Thread-2
3 From: Thread-3
1 From: Thread-2
2 From: Thread-2
4 From: Thread-3
3 From: Thread-2
4 From: Thread-2

Threads Run Once

14

public class RunOnceExample extends Thread {
 public void run() {
 System.out.println("I ran");
 }

 public static void main(String args[]) throws Exception {
 RunOnceExample onceOnly = new RunOnceExample();
 onceOnly.setPriority(6);
 onceOnly.start();

 System.out.println("Try restart");
 onceOnly.start();

 System.out.println("The End");
 }
}

Can't restart a thread

Causes Exception

Time-Slicing

15

A thread is run for a short time slice and suspended,
It resumes only when it gets its next "turn"

Threads of the same priority share turns

Non time-sliced threads run until:
 They end
 They are terminated
 They are interrupted
 Higher priority threads interrupts lower priority threads
 They go to sleep
 They block on some call
 Reading a socket
 Waiting for another thread

Java spec allows time-sliced or non-time-sliced threads

Ruby docs don't talk about this

Testing for Time-slicing

16

public class InfinityThread extends Thread
 {
 public void run()
 {
 while (true)
 System.out.println("From: " + getName());
 }

 public static void main(String[] args)
 {
 InfinityThread first = new InfinityThread();
 InfinityThread second = new InfinityThread();
 first.start();
 second.start();
 }
 }

a = Thread.new do
 10.times {|k| puts "a #{k}"}
end

b = Thread.new do
 10.times {|k| puts "b #{k}"}
end
a.join
b.join

If time-sliced output will be mixed

Java user & daemon Threads

17

Daemon thread
Expendable
When all user threads are done
 the program ends
 all daemon threads are stopped

User thread
Not expendable
Execute until
 Their run method ends or
 An exception propagates beyond the run
method.

When a Java Program Ends

18

Runtime.exit(int) has been called and the security manager permits the exit
operation to take place.

or

Only daemon threads are running

Daemon Example

19

public class DaemonExample extends Thread {
 public static void main(String args[]) {
 DaemonExample shortLived = new
DaemonExample();
 shortLived.setDaemon(true);
 shortLived.start();
 System.out.println("Bye");
 }

 public void run() {
 while (true) {
 System.out.println("From: " + getName());
 System.out.flush();
 }
 }
}

Output
From: Thread-0 (Repeated many times)
Bye
From: Thread-0 (Repeated some more, then the program ends)

Thread States

20

Executing

Only one thread per processor can be running at a time

Runnable

A thread is ready to run but is not currently running

Not Runnable

A thread that is suspended or waiting for a resource

Yield

21

public class YieldThread extends Thread {
 public void run() {
 for (int count = 0; count < 4; count++) {
 System.out.println(count + " From: " + getName());
 yield();
 }
 }

 public static void main(String[] args) {
 YieldThread first = new YieldThread();
 YieldThread second = new YieldThread();
 first.setPriority(1);
 second.setPriority(1);
 first.start();
 second.start();
 System.out.println("End");
 }
}

Output (Explain this)
0 From: Thread-0
0 From: Thread-1
1 From: Thread-0
1 From: Thread-1
2 From: Thread-0
2 From: Thread-1
3 From: Thread-0
End
3 From: Thread-1

Allow another thread of the same priority to run
Thread is still runable

Java sleep

22

public class NiceThread extends Thread {
 public void run() {
 try {
 System.out.println("Thread started");
 sleep(5);
 System.out.println("From: " + getName());
 System.out.println("Clean up operations");
 }
 catch (InterruptedException interrupted) {
 System.out.println("In catch");
 }
 }

 public static void main(String args[]) {
 NiceThread missManners = new NiceThread();
 missManners.start();
 System.out.println("Main after start");
 }
}

Output
Thread started
Main after start
From: Thread-0
Clean up operations

Put calling thread in not-runnable state for specified milliseconds

Java sleep

23

public class NiceThread extends Thread {
 public void run() {
 System.out.println("Thread started");
 System.out.println("From: " + getName());
 System.out.println("Clean up operations");
 }

 public static void main(String args[]) throws InterruptedException {
 NiceThread missManners = new NiceThread();
 missManners.start();
 missManners.sleep(50); //Who is sleeping
 System.out.println("Main after start");
 }
}

Output
Thread started
From: Thread-0
Clean up operations
Main after start

Put calling thread in not-runnable state for specified milliseconds

Java deprecated Thread methods

24

The following Thread methods are not thread safe

suspend
resume
stop
destroy

Interrupt

25

The following program does not end
The interrupt just sets the interrupt flag!

public class NoInterruptThread extends Thread {
 public void run() {
 while (true) {
 System.out.println("From: " + getName());
 }
 }

 public static void main(String args[]) throws InterruptedException{
 NoInterruptThread focused = new NoInterruptThread();
 focused.setPriority(2);
 focused.start();
 Thread.currentThread().sleep(5); // Let other thread run
 focused.interrupt();
 System.out.println("End of main");
 }
}

Output
From: Thread-0 (repeated many times)
End of main
From: Thread-0 (repeated until program is killed)

Using Thread.interrupted

26

public class RepeatableNiceThread extends Thread {
 public void run() {
 while (true) {
 while (!Thread.interrupted())
 System.out.println("From: " + getName());

 System.out.println("Clean up operations");
 }
 }

 public static void main(String args[]) throws InterruptedException{
 RepeatableNiceThread missManners =
 new RepeatableNiceThread();
 missManners.setPriority(2);
 missManners.start();
 Thread.currentThread().sleep(5);
 missManners.interrupt();
 }
}

Output
From: Thread-0
Clean up operations
From: Thread-0
From: Thread-0 (repeated)

Interrupt and sleep, join & wait

27

public class NiceThread extends Thread {
 public void run() {
 try {
 System.out.println("Thread started");
 while (!isInterrupted()) {
 sleep(5);
 System.out.println("From: " + getName());
 }
 System.out.println("Clean up operations");
 } catch (InterruptedException interrupted) {
 System.out.println("In catch");
 }
 }

 public static void main(String args[]) {
 NiceThread missManners = new NiceThread();
 missManners.setPriority(6);
 missManners.start();
 missManners.interrupt();
 }
}

Output
Thread started
From: Thread-0
From: Thread-0
In catch

Java interrupt ()

28

Sent to a thread to interrupt it

If thread is blocked on a call to wait, join or sleep
 InterruptedException is thrown &
 The interrupted status flag is cleared

if the thread is blocked on I/O operation on an interruptible channel (NIO)
 ClosedByInterruptException is thrown
 The interrupted status flag is set

If the thread is blocked by a selector (NIO)
 Interrupt status is set
 The thread returns from the selector call as normal

If none of the other conditions hold then the thread’s interrupt status is set

Details

29

If thread is blocked on a call to wait, join or sleep
 InterruptedException is thrown &
 The interrupted status flag is cleared

if the thread is blocked on I/O operation on an interruptible channel (NIO)
 ClosedByInterruptException is thrown
 The interrupted status flag is set

If the thread is blocked by a selector (NIO)
 Interrupt status is set
 The thread returns from the selector call as normal

If none of the other conditions hold then the thread’s interrupt status is set

Interrupt and Pre JDK 1.4 NIO operations

30

If a thread is blocked on a read/write to a:
 Stream
 Reader/Writer
 Pre-JDK 1.4 style socket read/write

The interrupt does not interrupt the read/write operation!

The threads interrupt flag is set

Until the IO is complete the interrupt has no effect

This is one motivation for the NIO package

Safety - Mutual Access

31

What happens when one thread reads a value while another is modifying it?

Java Safety - Synchronize

32

A call to a synchronized method locks the object
 Object remains locked until synchronized method is done

Any other thread's call to any synchronized method on the same object
 will block until the object is unlocked

Java Safety - Synchronize

33

class SynchronizeExample {
 int[] data;

 public String toString() {
 return "array length " + data.length + " array values " + data[0];
 }

 public synchronized void initialize(int size, int startValue){
 data = new int[size];
 for (int index = 0; index < size; index++)
 data[index] = (int) Math.sin(index * startValue);
 }

 public void unSafeSetValue(int newValue) {
 for (int index = 0; index < data.length; index++)
 data[index] = (int) Math.sin(index * newValue);
 }

 public synchronized void safeSetValue(int newValue) {
 for (int index = 0; index < data.length; index++)
 data[index] = (int) Math.sin(index * newValue);
 }
}

Synchronized Static Methods

34

class SynchronizeExample {
 int[] data;

 public String toString() {
 return "array length " + data.length + " array values " + data[0];
 }

 public synchronized void initialize(int size, int startValue){
 data = new int[size];
 for (int index = 0; index < size; index++)
 data[index] = (int) Math.sin(index * startValue);
 }

 public void unSafeSetValue(int newValue) {
 for (int index = 0; index < data.length; index++)
 data[index] = (int) Math.sin(index * newValue);
 }

 public synchronized void safeSetValue(int newValue) {
 for (int index = 0; index < data.length; index++)
 data[index] = (int) Math.sin(index * newValue);
 }
}

Locks class

Blocks other synchronized class methods

Synchronized Statements

35

synchronized
(expression) {
 statements
}

expression must evaluate to an object

That object is locked

class LockTest {
 public synchronized void enter() {
 System.out.println("In enter");
 }
 }

class LockTest {
 public void enter() {
 synchronized (this) {
 System.out.println("In enter");
 }
 }
 }

Lock for Block and Method

36

public class LockExample extends Thread {
 private Lock myLock;

 public LockExample(Lock aLock) {
 myLock = aLock;
 }
 public void run() {
 System.out.println("Start run");
 myLock.enter();
 System.out.println("End run");
 }
 public static void main(String args[]) throws Exception {
 Lock aLock = new Lock();
 LockExample tester = new LockExample(aLock);

 synchronized (aLock) {
 System.out.println("In Block");
 tester.start();
 System.out.println("Before sleep");
 Thread.currentThread().sleep(5000);
 System.out.println("End Block");
 }
 }
}

class Lock {
 public synchronized void enter() {
 System.out.println("In enter");
 }
}

Output
In Block
Start run
Before sleep
End Block
In enter
End run (why is this at the end?)

Synchronized and Inheritance

37

class Top {
 public void synchronized left() {
 // do stuff
 }

 public void synchronized right() {
 // do stuff
 }
}

class Bottom extends Top {
 public void left() {
 // not synchronized
 }

 public void right() {
 // do stuff not synchronized
 super.right(); // synchronized here
 // do stuff not synchronized
 }

methods do not inherit
synchronized

wait and notify

38

public final void wait(timeout) throws InterruptedException
public final void wait(timeout, nanos) throws InterruptedException
public final void wait() throws InterruptedException
 Causes a thread to wait until it is notified or the specified timeout
expires.

 Throws: IllegalMonitorStateException
 If the current thread is not the owner of the Object's monitor.

 Throws: InterruptedException
 Another thread has interrupted this thread.

public final void notify()
public final void notifyAll()

 Notifies threads waiting for a condition to change.

wait - How to use

39

The thread waiting for a condition should look like:

synchronized void waitingMethod()
 {
 while (! condition)
 wait();

 Now do what you need to do when condition is true
 }

Everything is executed in a synchronized method

The test condition is in loop not in an if statement

The wait suspends the thread it atomically releases the lock on the
object

notify - How to Use

40

synchronized void changeMethod()
 {
 Change some value used in a condition test

 notify();
 }

 wait and notify Example

41

Shared
Queue

Producer Consumer

When can Consumer read from queue?

wait and notify - Producer

42

import java.util.concurrent.*;

public class Producer extends Thread {
 BlockingQueue<String> factory;
 int workSpeed;

 public Producer(String name, BlockingQueue<String> output, int speed) {
 setName(name);
 factory = output;
 workSpeed = speed;
 }

 public void run() {
 try {
 int product = 0;
 while (true) {
 System.out.println(getName() + " produced " + product);
 factory.add(getName() + String.valueOf(product));
 product++;
 sleep(workSpeed);
 }
 }
 catch (InterruptedException workedToDeath) {
 return;
 }
 }
}

wait and notify - Consumer

43

import java.util.concurrent.*;

class Consumer extends Thread {
 BlockingQueue<String> localMall;
 int sleepDuration;

 public Consumer(String name, BlockingQueue<String> input, int speed) {
 setName(name);
 localMall = input;
 sleepDuration = speed;
 }

 public void run() {
 try {
 while (true) {
 System.out.println(getName() + " got " + localMall.take());
 sleep(sleepDuration);
 }
 }
 catch (InterruptedException endOfCreditCard) {
 return;
 }
 }
}

wait and notify - Driver Program

44

import java.util.concurrent.*;
public class ProducerConsumerExample {
 public static void main(String args[]) throws Exception {
 BlockingQueue<String> wallmart = new ArrayBlockingQueue(100, true);
 Producer nike = new Producer("Nike", wallmart, 500);
 Producer honda = new Producer("Honda", wallmart, 1200);
 Consumer valleyGirl = new Consumer("Sue", wallmart, 400);
 Consumer valleyBoy = new Consumer("Bob", wallmart, 900);
 Consumer dink = new Consumer("Sam", wallmart, 2200);
 nike.start();
 honda.start();
 valleyGirl.start();
 valleyBoy.start();
 dink.start();
 }
}

Nike produced 0 Nike produced 2 Nike produced 4

Honda produced 0 Sue got Nike2 Sue got Nike4

Sue got Nike0 Honda produced 1 Honda produced

Bob got Honda0 Bob got Honda1 Bob got Honda2

Nike produced 1 Nike produced 3 Nike produced 5

Sam got Nike1 Sue got Nike3 Sue got Nike5

Queue
nike

Honda

Sue

Bob

Sam

Java Blocking Queues

45

ArrayBlockingQueue
DelayQueue
LinkedBlockingQueue
PriorityBlockingQueue
SynchronousQueue

Java ThreadPoolExecuter

46

import java.util.concurrent.*;

public class ThreadPoolExample extends Object
{
 public static void main(String[] args)
 {
 int corePoolSize = 2;
 int maximumPoolSize = 5;
 long keepAliveTime = 60 * 10;
 TimeUnit keepAliveUnit = TimeUnit.SECONDS;
 BlockingQueue<Runnable> surplusJobs = new LinkedBlockingQueue<Runnable>();
 ThreadPoolExecutor workers = new ThreadPoolExecutor(corePoolSize,
 maximumPoolSize, keepAliveTime, keepAliveUnit, surplusJobs);

 for (int k = 0;k< 5; k++)
 workers.execute(new SimpleThread(k + 5));
 }
}

