
CS 580 Client-Server Programming
Spring Semester, 2009

Doc 15 SQL
18 March, 2010

Copyright ©, All rights reserved. 2010 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Databases & Your server

2

You will be creating your own tables in your database for the server

We will be using SQLite for the database

3

CS 514 in 51 slides

Jargon

4

Client Server

2-Tier

Client Server Database

3-Tier

More Jargon

5

Sometimes database means a program for managing data

 Oracle Corporation is a database company.
 MS Access is database.

Sometimes database means a collection of data

 I keep a database of my CD collection on 3 by 5 cards

Sometimes database means a set of tables, indexes, and views

 My program needs to connect to the Airline Reservation database, which
uses Oracle

Some Reasons for Using a Database

6

Persistence of data

Sharing of data between programs

Handle concurrent requests for data access

Transactions that can be rolled back

Report generation

In the Beginning - Relational Databases

7

Dr. E. F. Codd
Develops relational database model
Early 1970's

IBM System R relational database
 Mid 1970's
 Contained the original SQL language

First commercial database - Oracle 1979

Object Databases were there too

8

Objects are stored in the database

Research into databases fo graph structured databases
Early to mid 1970s

Oobject-oriented database term first used
1985

First commercial OO database system
1986

Relational Databases dominated Market

9

Relational databases standard

DB Administrators make lots money

Oracle makes ton of money

MySQL & PostgresSQL open source databases become popular

But Some Were not Happy

10

Large data sets not handled well
Think Google

SQL databases not flexible enough

NoSQL Databases

11

Hadoop/HBase
Cassandra
CouchDB
MongoDB
Amazon SimpleDB
MemcacheDB

Document Store
Key/Value Store
Eventually‐Consistent Key‐Value Store

Relational Databases and SQL

12

Database consists of a number of tables

Table is a collection of records

Each Column of data has a type

+----------------------+----------------------+------------+----------+

| firstname | lastname | phone | code |

+----------------------+----------------------+------------+----------+

| John | Smith | 555-9876 | 2000 |

| Ben | Oker | 555-1212 | 9500 |

| Mary | Jones | 555-3412 | 9900 |

+----------------------+----------------------+------------+----------+

Use Structured query language (SQL) to access data

Some Available Relational Databases

13

Commercial
Oracle
DB2
SQL Server
Access
Informix
Ingres
InterBase
Sybase
FileMaker Pro
FoxPro
Paradox
dBase

Open Source
MySQL
PostgresSQL

Public Domain
SQLite

MySQL, PostgreSQL, SQLite

14

Open source databases

http://www.mysql.com/

http://www.postgresql.org/

Above site have free downloads and documentation

http://www.sqlite.org/

http://www.mysql.com
http://www.mysql.com
http://www.postgresql.org
http://www.postgresql.org

SQLite & Clients

15

SQLite is embedded into your application

Use JDBC to access the database

SQLite GUI clients
Firefox https://addons.mozilla.org/en-US/firefox/addon/5817

Creating a Table

16

CREATE TABLE SampleTable (
name text UNIQUE,
age integer,
isStudent boolean,
description

)

name age isStudent description

Adding Data

17

name age isStudent description

Donald Knuth 72 0 Computer Science
deity

insert into SampleTable values(
'Donald Knuth',
72,
0,
'Computer Science deity'

)

select * from SampleTable

SQLite Datatypes

18

Storage Classes

NULL

INTEGER
Signed integer in 1, 2, 3, 4, 6, or 8 bytes

REAL
8-byte IEEE floating point number

TEXT
Text stored using the database encoding (UTF-8, UTF-16BE or UTF-16LE)

BLOB
Stored as it is entered into the database

SQLite Datatypes

19

Dynamic Typing

Any column may be used to store a value of any storage class
except an INTEGER PRIMARY KEY column

So what happens when you insert text into an integer column?

SQLite Column Affinity

20

Each column has its preferred datatype (affinity)

if data can be converted losslessly
SQLite stores data using the column preferred datatype

else stores type as it is

SQLite Affinity

21

SQLType SQLite Affinity

INT
INTEGER
TINYINT

SMALLINT
MEDIUMINT

BIGINT
UNSIGNED BIG INT

INT2
INT8

INTEGER

CHARACTER(20)
VARCHAR(255)

VARYING CHARACTER(255)
NCHAR(55)

NATIVE CHARACTER(70)
NVARCHAR(100)

TEXT
CLOB

TEXT

SQLType SQLite Affinity

BLOB
no datatype specified NONE

REAL
DOUBLE

DOUBLE PRECISION
FLOAT

REAL

NUMERIC
DECIMAL(10,5)

BOOLEAN
DATE

DATETIME

NUMERIC

Common SQL Statements

22

SELECT Retrieves data from table(s)
INSERT Adds row(s) to a table
UPDATE Changes field(s) in record(s)
DELETE Removes row(s) from a table Data Definition
CREATE TABLE Define a table and its columns(fields)
DROP TABLE Deletes a table
ALTER TABLE Adds a new column, add/drop primary key
CREATE INDEX Create an index
DROP INDEX Deletes an index
CREATE VIEW Define a logical table from other table(s)/view(s)
DROP VIEW Deletes a view

SQL is not case sensitive

CREATE table

23

General Form

CREATE TABLE table_name (
 col_name col_type [NOT NULL | PRIMARY KEY]
 [, col_name col_type [NOT NULL | PRIMARY KEY]]*
)

Example

CREATE TABLE students
 (
 firstname CHAR(20) NOT NULL,
 lastname CHAR(20),
 phone CHAR(10),
 code INTEGER
)

CREATE TABLE codes
 (
 code INTEGER,
 name CHAR(20)
)

SQLite Firefox Client

24

CREATE TABLE "main"."students" ("firstname" CHAR NOT
NULL , "lastname" CHAR, "phone" CHAR, "code" INTEGER)

Insert

25

Add data to a table

General Form
INSERT [LOW_PRIORITY | DELAYED] [IGNORE]
 [INTO] tbl_name [(col_name,...)]
 VALUES ((expression | DEFAULT),...),(...),...
 [ON DUPLICATE KEY UPDATE col_name=expression, ...]

Select

26

Gets data from one or more tables

General Form
SELECT [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT]
 [SQL_BUFFER_RESULT] [SQL_CACHE | SQL_NO_CACHE]
 [SQL_CALC_FOUND_ROWS] [HIGH_PRIORITY]
 [DISTINCT | DISTINCTROW | ALL]
 select_expression,...
 [INTO {OUTFILE | DUMPFILE} 'file_name' export_options]
 [FROM table_references
 [WHERE where_definition]
 [GROUP BY {unsigned_integer | col_name | formula} [ASC | DESC], ...
 [WITH ROLLUP]]
 [HAVING where_definition]
 [ORDER BY {unsigned_integer | col_name | formula} [ASC | DESC] ,...]
 [LIMIT [offset,] row_count | row_count OFFSET offset]
 [PROCEDURE procedure_name(argument_list)]
 [FOR UPDATE | LOCK IN SHARE MODE]]

Insert Examples

27

INSERT
 INTO students (firstname, lastname, phone, code)
 VALUES ('Roger', 'Whitney', '594-3535', 2000)

INSERT
 INTO codes (code, name)
 VALUES (2000, 'marginal')

SELECT * FROM students;
+-----------+----------+----------+------+
| firstname | lastname | phone | code |
+-----------+----------+----------+------+
| Roger | Whitney | 594-3535 | 2000 |
+-----------+----------+----------+------+

More Select Examples

28

SELECT firstname , phone FROM students
+-----------+----------+
| firstname | phone |
+-----------+----------+
| Roger | 594-3535 |
+-----------+----------+
1 row in set (0.00 sec)

SELECT lastname, name
 FROM students, codes
 WHERE students.code = codes.code

+----------+----------+
| lastname | name |
+----------+----------+
| Whitney | marginal |
+----------+----------+
1 row in set (0.00 sec)

More Select Examples

29

SELECT students.lastname, codes.name
 FROM students, codes
 WHERE students.code = codes.code

+----------+----------+
| lastname | name |
+----------+----------+
| Whitney | marginal |
+----------+----------+
1 row in set (0.00 sec)

Update

30

Modify existing data in a database

General Form

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name [, tbl_name ...]
 SET col_name1=expr1 [, col_name2=expr2 ...]
 [WHERE where_definition]

Update Example

31

UPDATE students
 SET firstname='Sam'
 WHERE lastname='Whitney'

Few More SQL Commands

32

ALTER TABLE students ADD column foo CHAR(40);

DROP TABLE students;

An Example

33

name faculty_id

Whitney 1

Beck 2

Anantha 3

CREATE TABLE "faculty" ("name" VARCHAR NOT NULL , "faculty_id" INTEGER
PRIMARY KEY AUTOINCREMENT)

Indices

34

Indices make accessing faster

Primary keys automatically have an index

The CREATE INDEX command creates indices

 CREATE INDEX faculty_name_key on faculty (name);

Adding Values

35

INSERT INTO faculty (name) VALUES ('Whitney')
INSERT INTO faculty (name) VALUES ('Beck')
INSERT INTO faculty (name) VALUES ('Lewis')
INSERT INTO faculty (name) VALUES ('Eckberg')

select * from faculty;

Result
 name | faculty_id
----------------------+-------------
 Whitney | 1
 Beck | 2
 Lewis | 3
 Eckberg | 4
(4 rows)

Second Table

36

start_time end_time day faculty_id office_hour_id

10:00 11:00 Wed 1 1

8:00 12:00 Mon 2 2

17:00 18:30 Tue 1 3

9:00 10:30 Tue 3 4

9:00 10:30 Thu 3 5

15:00 16:00 Fri 1 6

name faculty_id

Whitney 1

Beck 2

Lewis 3

Eckberg 4

Generating Second Table

37

CREATE TABLE "office_hours" (
"start_time" TEXT NOT NULL ,
"end_time" TEXT NOT NULL ,
"day" TEXT NOT NULL ,
"faculty_id" INTEGER NOT NULL check(typeof("faculty_id") = 'integer') ,
"office_hour_id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL
)

Adding Office Hours

38

Simple Insert
INSERT
 INTO office_hours (start_time, end_time, day, faculty_id)
 VALUES ('10:00:00', '11:00:00' , 'Wed', 1);

The problem is that we need to know the id for the faculty

Adding Office Hours

39

Using Select

INSERT INTO
 office_hours (start_time, end_time, day, faculty_id)
SELECT
 '8:00:00' AS start_time,
 '12:00:00' AS end_time,
 'Mon' AS day,
 faculty_id AS faculty_id
FROM
 faculty
WHERE
 name = 'Beck'

Selecting Office Hours

40

name start_time end_time day

Whitney 10:00:00 11:00:00 Wed

Beck 08:00:00 12:00:00 Mon

Whitney 17:00:00 18:30:00 Tue

Whitney 15:00:00 16:00:00 Fri

Lewis 09:00:00 10:30:00 Tue

Eckberg 09:00:00 10:30:00 Thu

SELECT
 name, start_time, end_time, day
FROM
 office_hours, faculty
WHERE
 faculty.faculty_id = office_hours.faculty_id;

Sample Selection

41

name start_time end_time day

Whitney 10:00:00 11:00:00 Wed

Whitney 15:00:00 16:00:00 Fri

SELECT
 name, start_time, end_time, day
FROM
 office_hours, faculty
WHERE
 faculty.faculty_id = office_hours.faculty_id
 AND
 start_time > '09:00:00'
 AND
 end_time < '16:30:00'
ORDER BY
 Name;

Joins

42

id first_name last_name

1 Roger Whitney

2 Leland Beck

3 Carl Eckberg

id user_name host person_id

1 beck cs.sdsu.edu 2

2 whitney cs.sdsu.edu 1

3 whitney rohan.sdsu.edu 1

4 foo rohan.sdsu.edu

People

Email_Addresses

Inner Join

43

first_name last_name user_name host

Leland Beck beck cs.sdsu.edu

Roger Whitney whitney cs.sdsu.edu

Roger Whitney whitney rohan.sdsu.edu

select
 first_name, last_name, user_name, host
from
 people, email_addresses
where
 people.id = email_addresses.person_id;

select
 first_name, last_name, user_name, host
from
 people inner join email_addresses
on
 (people.id = email_addresses.person_id);

Only uses entries linked in two tables

Outer Left Join

44

first_name last_name user_name host

Leland Beck beck cs.sdsu.edu

Roger Whitney whitney cs.sdsu.edu

Roger Whitney whitney rohan.sdsu.edu

Carl Eckberg

select
 first_name, last_name, user_name, host
from
 people left outer join email_addresses
on
 (people.id = email_addresses.person_id);

Use all entries from the left table

Right Outer Join

45

first_name last_name user_name host

Leland Beck beck cs.sdsu.edu

Roger Whitney whitney cs.sdsu.edu

Roger Whitney whitney rohan.sdsu.edu

foo rohan.sdsu.edu

select
 first_name, last_name, user_name, host
from
 people right outer join email_addresses
on
 (people.id = email_addresses.person_id);

Use all entries from the right table - Not supported in SQLite

A right outer join B == B left outer join A

46

select
 first_name, last_name, user_name, host
from
 email_addresses left outer join people
on
 (people.id = email_addresses.person_id);

select
 first_name, last_name, user_name, host
from
 people right outer join email_addresses
on
 (people.id = email_addresses.person_id);

The following two statements are equivalent

Normal forms

47

Defined by Dr. E. F. Codd in 1970

Reduce redundant data and inconsistencies

First Normal Form (1NF)

48

Name OfficeHour1 OfficeHour2 OfficeHour3

Whitney 10:00-11:00 W 17:00-18:30 Tu 15:00-16:00 Fri

Beck 8:00-12:00 M

Anantha 9:00-10:30 Tu 9:00-10:30 Thu

What if someone has more than 3 office hours?
Wasted space for those that have fewer office hours

Not is 1NF since office hours are repeated

An entity is in the first normal form when all its attributes are single valued

In 1NF

49

name faculty_id

Whitney 1

Beck 2

Anantha 3

start_time end_time day faculty_id office_hour_id

10:00 11:00 Wed 1 1

8:00 12:00 Mon 2 2

17:00 18:30 Tue 1 3

9:00 10:30 Tue 3 4

9:00 10:30 Thu 3 5

15:00 16:00 Fri 1 6

Office Hours

Faculty

Second Normal Form (2NF)

50

cd_title artist music_type cd_id

Songs from the Trilogy Glass Modern Classical 1

I Stoten Falu Spelmanslag Swedish 2

Photographer Glass Modern Classical 3

An entity is in the second normal form if:

 It is in 1NF and
 All non-key attributes must be fully dependent on the entire primary key

Table is not in 2NF since different CDs

 Can have the same artists
 Can have same music type

Example 2

51

Name Time Days Term Schedule Number

CS635 1700-1815 MW Spring01 9461

CS651 1700-1815 MW Spring01 9472

CS672 1700-1815 MW Spring01 9483

CS683 1830-1945 MW Spring01 9494

CS696 1530-1645 MW Spring01 9505

CS696 1830-1945 MW Spring01 9516

CS696 1530-1645 TTh Spring01 9520

At SDSU the schedule number uniquely identifies a course in a semester
So the term and schedule number uniquely identifies a course at SDSU
We can use term and schedule as the primary key

The table is in 1NF but not 2NF

Name, Time and Days are not fully dependent on the primary key

52

course_id time_id term_id schedule_number

1 1 2 9461

2 1 2 9472

3 1 2 9483

4 2 2 9494

course title name_id

CS635 Adv Obj Orient Dsgn Prog 1

CS651 Adv Multimedia Systems 2

CS683 Emerging Technologies 3

CS696 Writing Device Drivers 4

start_time end_time days time_id

17:00:00 18:15:00 MW 1

18:30:00 19:45:00 MW 2

15:30:00 16:45:00 MW 3

15:30:00 16:45:00 TTh 4

Etc.

TimeCourses

Schedule
semester year term_id

Fall 2000 1

Spring 2001 2

Term

Schedule in 2NF

Comments about Previous Slide

53

The schedule table is now in 2NF

What about the other tables?

If not how would you fix them?

Can you find a better way to decompose the original table?

Third Normal Form (3NF)

54

Name Address City State Name State abbreviation zip id

An entity is in third normal form if

 It is in 2NF and
 All non-key attributes must only be dependent on the primary key

State abbreviation depends on State Name

Table is not in 3NF

Customer

