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"Each pattern describes a problem which occurs over and over again in our environment, 
and then describes the core of the solution to that problem, in such a way that you can 
use this solution a million times over, without ever doing it the same way twice"

"Each pattern is a three-part rule, which expresses a relation between a certain context, a 
problem, and a solution"

A Pattern Language, Christopher Alexander, 1977



The process of waiting has inherent conflicts in it.

Waiting for doctor, airplane etc. requires spending time hanging around doing nothing

Cannot enjoy the time since you do not know when you must leave

Classic "waiting room" 
Dreary little room
People staring at each other 
Reading a few old magazines
Offers no solution

Fundamental problem
How to spend time "wholeheartedly" and
Still be on hand when doctor, airplane etc arrive

Fuse the waiting with other activity that keeps them in earshot
 Playground beside Pediatrics Clinic
 Horseshoe pit next to terrace where people waited

Allow the person to become still meditative
 A window seat that looks down on a street
 A protected seat in a garden
 A dark place and a glass of beer
 A private seat by a fish tank



Therefore:

"In places where people end up waiting create a situation which makes the waiting positive. 
Fuse the waiting with some other activity - newspaper, coffee, pool tables, horseshoes; 
something which draws people in who are not simple waiting. And also the opposite: make a 
place which can draw a person waiting into a reverie; quiet; a positive silence"



Problem

Two concepts are each a prerequisite of the other
To understand A one must understand B
To understand B one must understand A
A "chicken and egg" situation

Constraints and Forces

First explain A then B
 Everyone would be confused by the end

Simplify each concept to the point of incorrectness to explain the other one
 People don't like being lied to

Solution

Explain A & B correctly by superficially

Iterate your explanations with more detail in each iteration

Patterns for Classroom Education, Dana Anthony, pp. 391-406, Pattern Languages of 
Program Design 2, Addison Wesley, 1996



Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define common interfaces for a set of classes

Declare variables to be instances of the abstract class not instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of objects they use, as long as the objects adhere to 
the interface the client expects

Client classes/objects remain unaware of the classes that implement these objects. 
Clients only know about the abstract classes (or interfaces) that define the interface.



Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

Collection students = new XXX;
students.add( aStudent);

students can be any collection type

We can change our mind on what type to use



In dynamically typed languages programming to an interface is the norm

Dynamically typed languages tend to lack a way to declare an interface



Favor object composition over class inheritance

Composition
 Allows behavior changes at run time
 Helps keep classes encapsulated and focused on one task
 Reduce implementation dependencies

Inheritance
class A {
 Foo x
 public int complexOperation() { blah }
}

class B extends A {
 public void bar() { blah}
}

Composition
class B {
 A myA;
 public int complexOperation() {
  return myA.complexOperation()
 }

 public void bar() { blah}
}



Creating an object by specifying a class explicitly
 Abstract factory, Factory Method, Prototype

Dependence on hardware and software platforms
 Abstract factory, Bridge

Dependence on object representations or implementations
 Abstract factory, Bridge, Memento, Proxy

Algorithmic dependencies
 Builder, Iterator, Strategy, Template Method, Visitor

Tight Coupling
 Abstract factory, Bridge, Chain of Responsibility, 
 Command, Facade, Mediator, Observer

Extending functionality by subclassing
 Bridge, Chain of Responsibility, Composite, 
 Decorator, Observer, Strategy

Dependence on specific operations
 Chain of Responsibility, Command

Inability to alter classes conveniently
 Adapter, Decorator, Visitor



One and only once

In a program written in good style, everything is said once and only once

Methods with the same logic
Objects with same methods
Systems with similar objects

 rule is not satisfied



"Good code invariably has small methods and small objects"

Small pieces are needed to satisfy "once and only once"

Make sure you communicate the big picture or you get a mess



Don't put two rates of change together

An object should not have a field that changes every second & a field that change once a 
month 

A collection should not have some elements that are added/removed every second and 
some that are add/removed once a month

An object should not have code that has to change for each piece of hardware and code 
that has to change for each operating system



Good style leads to easily replaceable objects

"When you can extend a system solely by adding new objects without modifying any 
existing objects, then you have a system that is flexible and cheap to maintain"



"Another property of systems with good style is that their objects can be easily moved to 
new contexts"


