
CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2009

Doc 21 Metrics
28 Apr 2009

Copyright ©, All rights reserved. 2009 SDSU & Roger Whitney, 5500 
Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this 
document.

1

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml


References

2

Cyclomatic complexity, http://en.wikipedia.org/wiki/Cyclomatic_complexity

Lines of Code, http://en.wikipedia.org/wiki/Source_lines_of_code

Eclipse Metrics, http://metrics.sourceforge.net/

Specialization Index, http://semmle.com/documentation/semmlecode-glossary/specialization-index-of-
a-type/

OO Design Quality Metrics: An Analysis of Dependencies, Robert Martin, http://www.objectmentor.com/
resources/articles/oodmetrc.pdf

Source code for twitter4j, http://yusuke.homeip.net/twitter4j/en/index.html

Eclipse Metrics Plugin, http://eclipse-metrics.sourceforge.net/

Object-Oriented Metrics: Measures of Complexity, Brian Henderson-Sellers, Prentice Hall, 1996

2



Metrics

3

Effort moves toward whatever is measured

DeMarco's Principle

3



The Swedish Army Dictum

4

When the map and the territory don't agree, always believe the territory.

4



Eclipse Metrics 1.3.6

5

http://metrics.sourceforge.net/

Docs

http://sourceforge.net/projects/metrics

Source Forge Site

Eclipse plugin

Generates about 20 metrics
Displays result in tables in Eclipse
Generates dependency graphs

5



Eclipse Metrics Plugin

6

http://eclipse-metrics.sourceforge.net/

Author: Lance Walton

Generates about same metrics as Metrics 1.3.6
Exports results to html or csv
Generates table and graphs

6



Lines Of Code

7

SLOC
Rough measure of size

Physical SLOC
Code + comments + blank lines
Not count blank lines over 25% of a section
Eclipse Metrics - calls this Total Lines of Code (TLOC) 

Logical SLOC
Just lines of actual code
Eclipse Metrics

calls this Method Lines of Code (MLOC)
But only code inside method bodies

Effort is highly correlated with SLOC

7



Basic COCOMO

8

Effort Applied = a(KLOC)b   [ man-months ]

Software Cost Estimation Model

Type a b

Organic 2.4 1.05

Semi-detached 3.0 1.12

Embedded 3.6 1.20

Organic
Small team, less than rigid requirements

Semi-detached
Medium teams, 

Embedded
Tight constraints

8



Example - 2 KLOC Embedded

9

Effort Applied = a(KLOC)b      [ man-months ]

Effort Applied = 3.6*(2)1.20  = 8.3 man-months

9



Problems with LOC

10

Language differences

Hand written code verses autogenerated code

Programmer variation

Defining and counting LOC

Coding accounts for about 35% of overall effort

10



Twitter4j Example

11

11



Eclipse Metrics Plugin

12

12

Metrics 1.3.6 finds 8161 total lines of code. Eclipse Metrics Plugin finds 11113 total lines of code as it does not remove large 
segments of white space



Eclipse Metrics Plugin

13

13

Number of statements = Logical LOC. Not the difference from the graph on the previous slide.



More Size Metrics

14

Number of Packages
Number of Interfaces
Number of classes  per Package

14

The number of interfaces might be considered a metric related to abstraction. Although (number of interfaces / number of class) 
per package might be a better metric. At least in Java. Abstraction is  a better metric for this.



McCabe Cyclomatic Complexity

15

Number of linearly independent paths through a program

From graph theory

M = E − N + 2P

M = cyclomatic complexity
E = the number of edges of the graph
N = the number of nodes of the graph
P = the number of connected components.

15



Example

16

if( c1() )
   f1();
else
   f2();
 
if( c2() )
   f3();
else
   f4();

f1 f2

f3 f4

N = 7
E = 8
M = 8 - 7 + 2*1 = 3

16

Example From http://en.wikipedia.org/wiki/Cyclomatic_complexity



What does it tell us?

17

branch coverage ≤ cyclomatic complexity ≤ number of paths

Is an upper bound for the number of test cases that are necessary to 
achieve a complete branch coverage

Is a lower bound for the number of paths through the code

Cyclomatic Complexity

17



Cyclomatic Complexity & Quality

18

Higher Cyclomatic Complexity might indicate lower cohesion
One study indicated it is better indicator than metrics designed for 
cohesion

Some evidence that higher Cyclomatic Complexity implies more bugs

18



NIST Structured Testing methodology

19

Split modules with cyclomatic complexity greater than 10

It may be appropriate in some circumstances to 
permit modules with a complexity as high as 15

19

http://en.wikipedia.org/wiki/NIST
http://en.wikipedia.org/wiki/NIST


Eclipse Metrics 1.3.6

20

20



Eclipse Metrics Plugin

21

21



Weighted Methods per Class (WMC)

22

Sum of the McCabe Cyclomatic Complexity for all methods in a class

22



Basic Class Metrics

23

Number of methods per class
Number of static methods per class
Number of attributes(fields) per class
Number of static attributes per class

Number of parameters per method

23



Twitter4j Example

24

24



Nested Block Depth

25

The depth of nested blocks of code

    public static JSONObject toJSONObject(String string) throws JSONException {
        JSONObject o = new JSONObject();
        JSONTokener x = new JSONTokener(string);
        while (x.more()) {
            String name = Cookie.unescape(x.nextTo('='));
            x.next('=');
            o.put(name, Cookie.unescape(x.nextTo(';')));
            x.next();
        }
        return o;
    }

Depth = 2

25



Twitter4j Example

26

26



Some Inheritance Metrics

27

Depth of Inheritance Tree (DIT)
Distance from class Object in the inheritance hierarchy

Number of Children
Total number of direct subclasses of a class

Number of Overridden Methods (NORM)

Specialization Index
NORM * DIT / number of methods

If greater than 5 likely that superclass abstraction has a problem 

27



Lack of Cohesion in Methods (LCOM)

28

M    be the set of methods defined by the class
F     be the set of fields defined by the class
r(f)   be the number of methods that access field f, where f is a member of F
<r>  be the mean of r(f) over F.

High Cohesion

When each method accesses all fields
<r> = |M|
LCOM = 0

Low Cohesion

When each method accesses one fields
<r> = 1
LCOM = 1

<r> - |M|

 1 - |M|

28

Some people recommend that you create an accessor for each field. When you need to access the field in the class you use the 
accessor, rather than access the field directly. This will give you a LCOM of 1. One has to be careful with metrics.



Lack of Cohesion of Methods

29

29



Metrics for Stable Code

30

Dependencies make code rigid, fragile and difficult to reuse

Copy

Read 
Keyboard

Write 
Printer

30

Consider a program that copies characters typed on a keyboard to a printer. Rest of lecture is from OO Design Quality Metrics: 
An Analysis of Dependencies, Robert Martin, http://www.objectmentor.com/resources/articles/oodmetrc.pdf



Flexible version

31

reader

writer

Copy
Reader

Writer

Keyboard
Reader

Keyboard
Reader

Have dependencies on Reader/Writer classes
But these classes are stable

31



Main Idea

32

When code depends on other classes, changes to those classes 
can force the code to change

The fewer classes code depends on the stabler the code is 

32



Class Categories

33

Group of highly cohesive classes that

1. The classes within a category are closed together against any force of change

2. The classes within a category are reused together

3. The classes within a category share some common function or 
   achieve some common goal

If one class must change, all classes are likely to change

33



Dependency Metrics

34

Afferent Couplings (Ca) 
The number of classes outside this category that depend upon 
classes within this category

Efferent Couplings (Ce) 
The number of classes inside this category that depend upon classes 
outside this categories

Instability (I)

Ce

Ca+Ce

I = 0  means a category is maximally stable

I = 1 means a category is maximally instable

34



Instabilty Twitter4j Example

35

35



How to be flexible and stable?

36

Use abstract classes

36



Abstractness (A)

37

# of abstract classes in category

total # of classes in category

A = 1, all classes are abstract

A = 0, all classes are concrete

37



Main Sequence

38

1

1

Abstraction

Instability

Main Sequence

(0,1)

(1,0)

38



Distance From Main Sequence

39

Dn = | A + I - 1 |

Dn = 0 , category is on the main sequence

Dn = 1, category is far from main sequence

Values not near zero suggest restructuring the category

39



Twitter4j Example

40

40


