CS 580 Client-Server Programming
Spring Semester, 2009
Doc 7 Threads & Server Types
16 Feb, 2009

Copyright ©, All rights reserved. 2009 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

References

Cancellable Activities, Doug Lea, October 1998, http://gee.cs.oswego.edu/dl/cpj/cancel.html

Concurrent Programming in Java: Design Principles and Patterns, Doug Lea, Addison-Wesley, 1997
The Java Programming Language, 2nd Ed. Arnold & Gosling, Addison-Wesley, 1998

Java's Atomic Assignment, Art Jolin, Java Report, August 1998, pp 27-36.

Java 1.5.0 on-line documentation

Java Network Programming 2nd Ed., Harold, O'Reilly, Chapter 5

Programming Ruby, 2nd Ed, Thomas

Internetworking with TCP/IP, BSD Socket Version Vol. 3, Comer, Stevens, Prentice-Hall, 1993

http://gee.cs.oswego.edu/dl/cpj/cancel.html
http://gee.cs.oswego.edu/dl/cpj/cancel.html

Interrupt

The following program does not end
The interrupt just sets the interrupt flag!

public class NolnterruptThread extends Thread {
public void run() {
while (true) {
System.out.printin("From: " + getName());

public static void main(String argsl[]) throws InterruptedException{
NolnterruptThread focused = new NolnterruptThread();
focused.setPriority(2);
focused.start();
Thread.currentThread().sleep(5); // Let other thread run
focused.interrupt();
System.out.printin("End of main");

}
}
Output
From: Thread-0 (repeated many times)
End of main

From: Thread-0 (repeated until program is killed)
3

Using Thread.interrupted

public class RepeatableNiceThread extends Thread {
public void run() {
while (true) {
while ('Thread.interrupted())
System.out.printin("From: " + getName());

System.out.printin("Clean up operations"),

public static void main(String argsl[]) throws InterruptedException{
RepeatableNiceThread missManners =
new RepeatableNiceThread();
missManners.setPriority(2);
missManners.start();
Thread.currentThread().sleep(5);
missManners.interrupt();

Output
From: Thread-0

Clean up operations
From: Thread-0
From: Thread-0 (repeated) 4

Interrupt and sleep, join & wait

public class NiceThread extends Thread {
public void run() {
try {
System.out.printin("Thread started");
while (lisinterrupted()) {
sleep(5);
System.out.printin("From: " + getName());
}
System.out.printin("Clean up operations");
} catch (InterruptedException interrupted) {

System.out.printin("In catch"); Output
} Thread started
} From: Thread-0
From: Thread-0
public static void main(String args[]) { In catch

NiceThread missManners = new NiceThread();
missManners.setPriority(6);
missManners.start();

missManners.interrupt();

Java interrupt ()

Sent to a thread to interrupt it

If thread is blocked on a call to wait, join or sleep
InterruptedException is thrown &
The interrupted status flag is cleared

If the thread is blocked on I/O operation on an interruptible channel (NIO)
ClosedByInterruptException is thrown
The interrupted status flag is set

If the thread is blocked by a selector (NIO)
Interrupt status is set
The thread returns from the selector call as normal

If none of the other conditions hold then the thread'’s interrupt status is set

Detalils

If thread is blocked on a call to wait, join or sleep
InterruptedException is thrown &
The interrupted status flag is cleared

if the thread is blocked on I/O operation on an interruptible channel (NIO)
ClosedBylnterruptException is thrown
The interrupted status flag is set

If the thread is blocked by a selector (NIO)
Interrupt status is set
The thread returns from the selector call as normal

If none of the other conditions hold then the thread’s interrupt status is set

Interrupt and Pre JDK 1.4 NIO operations
If a thread is blocked on a read/write to a:
Stream
Reader/Writer
Pre-JDK 1.4 style socket read/write
The interrupt does not interrupt the read/write operation!
The threads interrupt flag is set

Until the 10 is complete the interrupt has no effect

This is one motivation for the NIO package

Safety - Mutual Access

Java Safety - Synchronize

A call to a synchronized method locks the object
Object remains locked until synchronized method is done

Any other thread's call to any synchronized method on the same
object

will block until the object is unlocked

Java Safety - Synchronize

class SynchronizeExample {
int[] data;

public String toString() {
return "array length " + data.length + " array values " + data[0];

public synchronized void initialize(int size, int startValue){
data = new int[size |;
for (int index = 0; index < size; index++)
data[index] = (int) Math.sin(index * startValue);

public void unSafeSetValue(int newValue) {
for (int index = 0; index < data.length; index++)
data[index] = (int) Math.sin(index * newValue);

public synchronized void safeSetValue(int newValue) {
for (int index = 0; index < data.length; index++)
data[index] = (int) Math.sin(index * newValue);

Synchronized Static Methods

class SynchronizeExample { Locks class
int[] data;

Blocks other synchronized class methods

public String toString() {
return "array length " + data.length + " array values " + data[0];

public synchronized void initialize(int size, int startValue){
data = new int[size |;
for (int index = 0;index < size; index++)
data[index] = (int) Math.sin(index * startValue);

public void unSafeSetValue(int newValue) {
for (int index = 0; index < data.length; index++)
data[index] = (int) Math.sin(index * newValue);

public synchronized void safeSetValue(int newValue) {
for (int index = 0; index < data.length; index++)
data[index] = (int) Math.sin(index * newValue);

Synchronized Statements

synchronized . .
expression must evaluate to an object

(expression) {

statements o
) That object is locked

class LockTest {
public synchronized void enter() {
System.out.printin("In enter");

} } 1

class LockTest { \ 4
public void enter() {
synchronized (this) {
System.out.printin("In enter");

}

Lock for Block and Method

public class LockExample extends Thread { class Lock {
private Lock myLock; public synchronized void enter() {
System.out.printin("In enter");
public LockExample(Lock alLock) { }
myLock = aLock; }
}

public void run() {
System.out.printin("Start run");
myLock.enter();
System.out.printin("End run");
}
public static void main(String args[]) throws Exception {
Lock aLock = new Lock();

LockExample tester = new LockExample(aLock);

Output
synchronized (aLock) { In Block
System.out.printin("In Block"); Start run
tester.start(); Before sleep
System.out.printin("Before sleep"); End Block
Thread.currentThread().sleep(5000); In enter o
System.out.printin("End Block"); Endrun (why is this at the end?)

class Top{ Synchronized and Inheritance

public void synchronized left() { methods do not inherit
// do stuff synchronized

}

public void synchronized right() {
/I do stuff

}
}

class Bottom extends Top {
public void left() {
// not synchronized

}

public void right() {
// do stuff not synchronized
super.right(); // synchronized here
// do stuff not synchronized

Ruby Synchronize

require 'monitor’
class Counter < Monitor
attr_reader :count

class Counter
attr_reader :count

def initialize
@count=0 def initialize
super @count =0
end super
end
def tick
@count += 1 def tick
end synchronize do
end @count += 1
end
end
end

counter = Counter.new counter = Counter.new

tickA = Thread.new { 10000.times { counter.tick}} tickA = Thread.new { 10000.times { counter.tick}}
tickB = Thread.new { 10000.times { counter.tick}} tickB = Thread.new { 10000.times { counter.tick}}
tickA.join tickA.join
tickB.join tickB.join

puts counter.count -> 14451 puts counter.count -> 20000

Ruby Synchronize without inheritance

require 'monitor’

class Counter
include MonitorMixin
attr_reader :count
def initialize
@count =0
super
end

def tick
synchronize do
@count += 1

end
end Ruby Synchronize examples from

end Programming Ruby, 2nd Ed, Thomas, pp 142-144

Using Monitor directly

require 'monitor’

class Counter
attr_reader :count
def initialize
@count =0
super
end

def tick
@count += 1
end
end

counter = Counter.new

lock = Monitor.new

tickA = Thread.new { 10000.times { lock.synchronize {counter.tick}}}
tickB = Thread.new { 10000.times { lock.synchronize {counter.tick}}}
tickA.join

tickB.join

puts counter.count -> 20000

wait and notify
public final void wait(timeout) throws InterruptedException

public final void wait(timeout, nanos) throws InterruptedException
public final void wait() throws InterruptedException

Causes a thread to wait until it is notified or the specified timeout
expires.

Throws: lllegalMonitorStateException
If the current thread is not the owner of the Object's monitor.

Throws: InterruptedException
Another thread has interrupted this thread.
public final void notify()

public final void notifyAll()

Notifies threads waiting for a condition to change.

wait - How to use

The thread waiting for a condition should look like:

synchronized void waitingMethod()

{

while (! condition)
wait();

Now do what you need to do when condition is true
}

Everything is executed in a synchronized method

The test condition is in loop not in an if statement

The wait suspends the thread it atomically releases the lock on the
object

20

notify - How to Use

synchronized void changeMethod()

{

Change some value used in a condition test

notify();
}

21

-

_

Producer

~N

wait and notify Example

When can Consumer read from queue?

Shared

J

Queue

22

4)

Consumer

_ J

import java.util.concurrent.”; m m
wait and notify - Producer
public class Producer extends Thread {
BlockingQueue<String> factory;
int workSpeed;

public Producer(String name, BlockingQueue<String> output, int speed) {
setName(name);
factory = output;
workSpeed = speed;

public void run() {
try {

int product = 0;

while (true) {
System.out.printin(getName() + " produced " + product);
factory.add(getName() + String.valueOf(product));
product++;
sleep(workSpeed);

}
}

catch (InterruptedException workedToDeath) {
return;

wait and notify - Consumer

import java.util.concurrent.”;

class Consumer extends Thread {
BlockingQueue<String> localMall;
int sleepDuration;

public Consumer(String name, BlockingQueue<String> input, int speed) {
setName(name);
localMall = input;
sleepDuration = speed;

}
public void run() {
try {
while (true) {
System.out.printin(getName() + " got " + localMall.take());
sleep(sleepDuration);
}
}
catch (InterruptedException endOfCreditCard) {
return;
}

24

wait and notify - Driver Program

import java.util.concurrent.”;

public class ProducerConsumerExample {
public static void main(String args[]) throws Exception {
BlockingQueue<String> wallmart = new ArrayBlockingQueue(100, true);
Producer nike = new Producer("Nike", wallmart, 500);
Producer honda = new Producer("Honda", wallmart, 1200);
Consumer valleyGirl = new Consumer("Sue", wallmart, 400);
Consumer valleyBoy = new Consumer("Bob", wallmart, 900);

Consumer dink = new Consumer("Sam", wallmart, 2200);

nike.start();
honda.start();
valleyGirl.start();
valleyBoy.start();
dink.start();

-
@

Nike produced 0 Nike produced 2 Nike produced 4
Honda produced 0 Sue got Nike2 Sue got Nike4
Sue got NikeO Honda produced | Honda produced
Bob got Honda0 Bob got Hondal Bob got Honda2
Nike produced | Nike produced 3 Nike produced 5
Sam got Nikel Sue got Nike3 Sue got Nike5

25

Java Blocking Queues

ArrayBlockingQueue
DelayQueue
LinkedBlockingQueue
PriorityBlockingQueue
SynchronousQueue

26

require ‘thread’ Ruby Producers & Consumers

queue = Queue.new
consumers = (1..3).collect do |each|
Thread.new("Consumer #{each}") do |name|

begin
product = queue.deq
puts "#{name}: consumed #{product}" Output
sleep(rand(0.05)) Consumer 1: consumed ltem O from Producer 1
end until product == :END_ OF WORK Consumer 2: consumed ltem O from Producer 2
end Consumer 3: consumed Item 1 from Producer 1
end Consumer 2: consumed Item 1 from Producer 2
Consumer 3: consumed Item 2 from Producer 1
producers = (1..2).collect do |each| Consumer 1: consumed Iltem 2 from Producer 2
Thread.new("Producer #each}") do [name| Consumer 1: consumed END_OF_WORK
3.times do |K| Consumer 2: consumed END_OF_WORK
sleep(0.1) Consumer 3: consumed END_OF_WORK
queue.enq("ltem #{k} from #{name}")
end
end
end

producers.each { |each| each.join }
consumers.size.times { queue.enq(:END_OF WORK)}
consumers.each { |each| each.join }

Example from
Programming Ruby, 2nd Ed, Thomas, pp 743

27

Java ThreadPoolExecuter

import java.util.concurrent.”;

public class ThreadPoolExample extends Object

{
public static void main(String[] args)
{
int corePoolSize = 2;
int maximumPoolSize = 5;
long keepAliveTime = 60 * 10;
TimeUnit keepAliveUnit = TimeUnit.SECONDS;
BlockingQueue<Runnable> surplusJobs = new LinkedBlockingQueue<Runnable>();
ThreadPoolExecutor workers = new ThreadPoolExecutor(corePoolSize,
maximumPoolSize, keepAliveTime, keepAliveUnit, surplusJobs);
for (int k = 0;k< 5; k++)
workers.execute(new SimpleThread(k + 5));
}

28

Types of Servers

Connectionless(UDP) verse Connection-Oriented (TCP)
lterative verses Concurrent

Stateless verse stateful

29

Iterative verses Concurrent Server

Iterative
Single process
Handles requests one at a time

Good for low volume & requests that are answered
quickly

30

Iterative verses Concurrent Server

Concurrent
Handle multiple requests concurrently
Normally uses thread/processes
Needed for high volume & complex requests
Harder to implement than iterative

Must deal with currency

31

Sample Concurrent Server

require 'socket’
class DateServer
def initialize(port)

def process_request_on(socket)
request = canonical_form(socket.gets("\n"))
now = Time.now

@port = port answer = case request
end when 'time’
now.strftime("%X")
def run() when 'date’
server = TCPServer.new(@port) now.strftime("%x")
puts("start " + @port.to_s) else
while (session = server.accept) "Invalid request"
Thread.new(session) do |connection| end
process_request_on(connection) socket.send(answer + "\n",0)
connection.close end
end
end def canonical_form(string)
end string.Istrip.rstrip.downcase
end
end

Can you spot the problem?

32

Single Thread Concurrent Server

One can implement a concurrent server using one thread/
process

while (true) {
check if any new connects (non-block accept)
if new connection accept
process a little on each current request

33

Stateless verses Stateful Servers

State information

Information maintained by server about ongoing interactions with
clients

Consumes server resources

How long does one maintain the state?

34

Modes of Operation

Stateful servers sometimes have different modes of operation

Each mode has a set of legal commands

In Login mode only the commands password & username are
acceptable

After successful login client-server connection in transaction mode

In transaction mode command X, Y Z are legal

These modes are also called server states or just states

35

