
CS 580 Client-Server Programming
Spring Semester, 2009

Doc 11 SQL
4 March, 2009

Copyright ©, All rights reserved. 2009 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml

Databases & Your server

2

You will be creating your own tables in your database for the server

Some students run databases on their own machines for development

I will create PostgreSQL databases for this class

While you are not required to use that database the database you use must be
accessible by your server when it is graded

3

CS 514 in 59 slides

Jargon

4

Client Server

2-Tier

Client Server Database

3-Tier

More Jargon

5

Sometimes database means a program for managing data

 Oracle Corporation is a database company.
 MS Access is database.

Sometimes database means a collection of data

 I keep a database of my CD collection on 3 by 5 cards

Sometimes database means a set of tables, indexes, and views

 My program needs to connect to the Airline Reservation database, which
uses Oracle

Some Reasons for Using a Database

6

Persistence of data

Sharing of data between programs

Handle concurrent requests for data access

Transactions that can be rolled back

Report generation

Types of Databases

7

Relational

Data is stored in tables

Object-Oriented

Tables can be subclassed

Programmer can define methods on tables

Object

Objects are stored in the database

Relational, Object-Oriented Databases and SQL

8

Database consists of a number of tables

Table is a collection of records

Each Column of data has a type

+----------------------+----------------------+------------+----------+

| firstname | lastname | phone | code |

+----------------------+----------------------+------------+----------+

| John | Smith | 555-9876 | 2000 |

| Ben | Oker | 555-1212 | 9500 |

| Mary | Jones | 555-3412 | 9900 |

+----------------------+----------------------+------------+----------+

Use Structured query language (SQL) to access data

Some Available Databases

9

Oracle
DB2
SQL Server
Access
Informix
Ingres
InterBase
Sybase
FileMaker Pro
FoxPro
Paradox
dBase

Open Source Databases
MySQL
PostgresSQL

SQL History

10

Dr. E. F. Codd develops relational database model
Early 1970's

IBM System R relational database
 Mid 1970's
 Contained the original SQL language

First commercial database - Oracle 1979

SQL was aimed at:
 Accountants
 Business people

SQL92
 First commonly followed standard
 ANSI X3.135-1992
 SQL2

ISO/IEC 9075-1 through 5
 New SQL standard

MySQL & PostgreSQL

11

Open source databases

http://www.mysql.com/

http://www.postgresql.org/

Above site have free downloads and documentation

Historically I used MySql for this course. While it had some defects MySql was easier to install, easier to use on simple situations,
had better documentation, and was far more common than PostgreSql. The situation has changed a lot. PostgreSql is now as
easy to install, its documentation is as good as MySql, it runs faster than MySql, and has better support for transactions. There
also is the issue of Sun's purchase of MySql and some lost of direction for the free version of MySql. So at least personally I have
stopped using MySql and don't provided MySql accounts for students.

http://www.mysql.com
http://www.mysql.com
http://www.postgresql.org
http://www.postgresql.org

MySQL – Connecting to the Database

12

Can be done with:
 Mysql command line tool - mysql
 GUI clients
 Program

GUI Clients

If done well are very useful

There are many of these

I use DbVisualizer, & CocoaMySQL

DbVisualizer if Java based so runs on may platforms

http://www.dbvis.com/products/dbvis/

http://www.dbvis.com/products/dbvis/
http://www.dbvis.com/products/dbvis/

SQL Syntax

13

Names

Databases, tables columns & indexes have names

Legal Characters

Alphanumeric characters, '_', '$'

Names can start with:
 Letter
 Underscore
 Letter with diacritical marks and some non-latin letters

Name length

63 characters – default in PostgreSQL
64 characters - MySQL

Names are not case sensitive

Data Types

14

Numeric Values
Integer - decimal or hex
Floating-point - scientific &
12.1234

Sequence Meaning
\' Single quote
\b Backspace
\n Newline
\r Tab
\\ Backslash

\xxxx Character were xxxx is the octal of
ASCII code (PostgreSQL)

String Values
 ‘this is a string’ PostgreSQL
 ‘this is a string’ “this is also a string" MySQL

Including a quote character in a string
Double quote the character
'Don''t do it'

Escape the quote character with a backslash
'Don\'t do it'

Comments

15

-- this is a comment in MySQL and PostgreSQL

/* this is also a comment in MySQL and PostgreSQL */

this is a comment in MySQL

Numeric Data Types

16

Type name Description Range
smallint Fixed-precision -32768 to +32767
integer Usual choice for fixed-precision -2147483648 to +2147483647

bigint Very large range fixed-precision -9223372036854775808 to
9223372036854775807

decimal user-specified precision, exact no limit

numeric user-specified precision, exact no limit

real variable-precision, inexact 6 decimal digits precision

double precision variable-precision, inexact 15 decimal digits precision

serial autoincrementing integer 1 to 2147483647

Numeric(10, 2) defines a number with maximum of 10 digits with 2 of the 10 to
the right of the decimal point

 12345678.91

decimal and numeric are different names for the same type

String Types

17

Type Description
char(n) Fixed-length blank padded
varchar(n) Variable-length with limit
text Variable unlimited length
bytea (PostgreSQL) Variable (not specifically limited) length binary string
blob (MySQL) Variable (not specifically limited) length binary string

CHAR & VARCHAR are the most common string types

CHAR is fixed-width
 Shorter strings are padded

TEXT can be any size

PostgreSQL limits a string to 1GB in storage space

MySQL limits CHAR and VARCHAR to 255 characters

Date & Time Types - PostgreSQL

18

Type Description

timestamp [(p)] without time zone both date and time

timestamp [(p)] [with time zone] both date and time

interval [(p)] for time intervals

date dates only

time [(p)] [without time zone] times of day only

time [(p)] with time zone times of day only

(p) indicates optional number of fractional digits retained in the seconds field

Date Formats - PostgreSQL

19

Example Description
January 8, 1999 Unambiguous
1999-01-08 ISO-8601 format, preferred
1/8/1999 U.S.; read as August 1 in European mode
8/1/1999 European; read as August 1 in U.S. mode
1/18/1999 U.S.; read as January 18 in any mode
19990108 ISO-8601 year, month, day
990108 ISO-8601 year, month, day
1999.008 Year and day of year
99008 Year and day of year
J2451187 Julian day
January 8, 99 BC Year 99 before the Common Era

Setting Date Formats - PostgreSQL

20

SET DateStyle TO ‘US’
SET DateStyle TO ‘NonEuropean’

 Sets date format to month day year

SET DateStyle TO ‘European’

 Sets date format to day month year

Default is ISO style

Dates – MySQL

21

DATETIME – ‘YYYY-MM-DD HH:MM:SS’ format

DATE – ‘YYYY-MM-DD’ format

TIMESTAMP
 Changed in MySQL 4.1
 Basically now is same as DATETIME

Common SQL Statements

22

SELECT Retrieves data from table(s)
INSERT Adds row(s) to a table
UPDATE Changes field(s) in record(s)
DELETE Removes row(s) from a table Data Definition
CREATE TABLE Define a table and its columns(fields)
DROP TABLE Deletes a table
ALTER TABLE Adds a new column, add/drop primary key
CREATE INDEX Create an index
DROP INDEX Deletes an index
CREATE VIEW Define a logical table from other table(s)/view(s)
DROP VIEW Deletes a view

SQL is not case sensitive

Examples That Follow

23

Will use mysql command line tool

Used the command

 mysql -h host -u user -p

to conntect to the database, where host and user are given the correct value

On rohan the full name of command is:

 /opt/local/mysql/bin/mysql

Some examples will also show postgresSQL text client

CREATE DATABASE

24

General Form
CREATE DATABASE [IF NOT EXISTS] db_name
 [create_specification [, create_specification] ...]

create_specification:
 [DEFAULT] CHARACTER SET charset_name
 | [DEFAULT] COLLATE collation_name

Example

mysql> create database lectureExamples;
Query OK, 1 row affected (0.00 sec)

PosgreSQL Example

25

Al 15->psql -h bismarck.sdsu.edu cs580whitney cs580whitney
Password:
Welcome to psql 7.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

cs580whitney=> create database lectureExamples;
ERROR: permission denied to create database
cs580whitney=>

Student accounts do not have authority to create new databases

USE

26

Sets a default database for subsequent queries

General Form

USE db_name

Example

mysql> use lectureExamples;
Database changed

CREATE table

27

General Form

CREATE TABLE table_name (
 col_name col_type [NOT NULL | PRIMARY
KEY]
 [, col_name col_type

[NOT NULL | PRIMARY KEY]]*
)

Example

mysql> CREATE TABLE students
 (
 firstname CHAR(20) NOT NULL,
 lastname CHAR(20),
 phone CHAR(10),
 code INTEGER
);

mysql> CREATE TABLE codes
 (
 code INTEGER,
 name CHAR(20)
);

PostgreSQL Example

28

cs580whitney=> CREATE TABLE students
cs580whitney-> (
cs580whitney(> firstname CHAR(20) NOT NULL,
cs580whitney(> lastname CHAR(20),
cs580whitney(> phone CHAR(10),
cs580whitney(> code INTEGER
cs580whitney(>);

CREATE TABLE

cs580whitney=> select * from students;
 firstname | lastname | phone | code
-----------+----------+-------+------
(0 rows)

Select

29

Gets data from one or more tables

General Form
SELECT [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT]
 [SQL_BUFFER_RESULT] [SQL_CACHE | SQL_NO_CACHE]
 [SQL_CALC_FOUND_ROWS] [HIGH_PRIORITY]
 [DISTINCT | DISTINCTROW | ALL]
 select_expression,...
 [INTO {OUTFILE | DUMPFILE} 'file_name' export_options]
 [FROM table_references
 [WHERE where_definition]
 [GROUP BY {unsigned_integer | col_name | formula} [ASC | DESC], ...
 [WITH ROLLUP]]
 [HAVING where_definition]
 [ORDER BY {unsigned_integer | col_name | formula} [ASC | DESC] ,...]
 [LIMIT [offset,] row_count | row_count OFFSET offset]
 [PROCEDURE procedure_name(argument_list)]
 [FOR UPDATE | LOCK IN SHARE MODE]]

Select Example

30

mysql> SELECT * FROM students;
Empty set (0.00 sec)

Insert

31

Add data to a table

General Form
INSERT [LOW_PRIORITY | DELAYED] [IGNORE]
 [INTO] tbl_name [(col_name,...)]
 VALUES ((expression | DEFAULT),...),(...),...
 [ON DUPLICATE KEY UPDATE col_name=expression, ...]

Insert Examples

32

mysql> INSERT
 INTO students (firstname, lastname, phone, code)
 VALUES ('Roger', 'Whitney', '594-3535', 2000);

mysql> INSERT
 INTO codes (code, name)
 VALUES (2000, 'marginal');

mysql> SELECT * FROM students;
+-----------+----------+----------+------+
| firstname | lastname | phone | code |
+-----------+----------+----------+------+
| Roger | Whitney | 594-3535 | 2000 |
+-----------+----------+----------+------+
1 row in set (0.01 sec)

More Select Examples

33

mysql> SELECT firstname , phone FROM students;
+-----------+----------+
| firstname | phone |
+-----------+----------+
| Roger | 594-3535 |
+-----------+----------+
1 row in set (0.00 sec)

mysql> SELECT lastname, name
 FROM students, codes
 WHERE students.code = codes.code;

+----------+----------+
| lastname | name |
+----------+----------+
| Whitney | marginal |
+----------+----------+
1 row in set (0.00 sec)

More Select Examples

34

mysql> SELECT students.lastname, codes.name
 FROM students, codes
 WHERE students.code = codes.code;

+----------+----------+
| lastname | name |
+----------+----------+
| Whitney | marginal |
+----------+----------+
1 row in set (0.00 sec)

Update

35

Modify existing data in a database

General Form

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name [, tbl_name ...]
 SET col_name1=expr1 [, col_name2=expr2 ...]
 [WHERE where_definition]

Example

mysql> UPDATE students
 SET firstname='Sam'
 WHERE lastname='Whitney';

Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Few More SQL Commands

36

mysql> ALTER TABLE students ADD column foo
CHAR(40);
Query OK, 1 row affected (0.03 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DROP TABLE students;
Query OK, 0 rows affected (0.01 sec)

mysql> DROP DATABASE lectureexamples;
Query OK, 0 rows affected (0.00 sec)

An Example

37

name faculty_id

Whitney 1

Beck 2

Anantha 3

PostgreSQL Version
CREATE TABLE faculty (
 name CHAR(20) NOT NULL,
 faculty_id SERIAL PRIMARY KEY
);

MySQL Version
CREATE TABLE faculty (
 name CHAR(20) NOT NULL,
 faculty_id INTEGER AUTO_INCREMENT PRIMARY KEY
);

Indices

38

Indices make accessing faster

Primary keys automatically have an index

The CREATE INDEX command creates indices

 CREATE INDEX faculty_name_key on faculty (name);

Adding Values

39

INSERT INTO faculty (name) VALUES ('Whitney');
INSERT INTO faculty (name) VALUES ('Beck');
INSERT INTO faculty (name) VALUES ('Anantha');
INSERT INTO faculty (name) VALUES ('Vinge');

select * from faculty;

Result
 name | faculty_id
----------------------+-------------
 Whitney | 1
 Beck | 2
 Anantha | 3
 Vinge | 4
(4 rows)

Second Table

40

start_time end_time day faculty_id office_hour_id

10:00 11:00 Wed 1 1

8:00 12:00 Mon 2 2

17:00 18:30 Tue 1 3

9:00 10:30 Tue 3 4

9:00 10:30 Thu 3 5

15:00 16:00 Fri 1 6

name faculty_id

Whitney 1

Beck 2

Anantha 3

Vinge 4

Generating Second Table

41

PostgreSQL
CREATE TABLE office_hours (
 start_time TIME NOT NULL,
 end_time TIME NOT NULL,
 day CHAR(3) NOT NULL,
 faculty_id INTEGER REFERENCES faculty,
 office_hour_id SERIAL PRIMARY KEY
);

MySQL
CREATE TABLE office_hours (
 start_time TIME NOT NULL,
 end_time TIME NOT NULL,
 day CHAR(3) NOT NULL,
 faculty_id INTEGER REFERENCES faculty,
 office_hour_id INTEGER AUTO_INCREMENT PRIMARY KEY
);

Adding Office Hours

42

Simple Insert
INSERT
 INTO office_hours (start_time, end_time, day, faculty_id)
 VALUES ('10:00:00', '11:00:00' , 'Wed', 1);

The problem is that we need to know the id for the faculty

Adding Office Hours

43

Using Select

INSERT INTO
 office_hours (start_time, end_time, day, faculty_id)
SELECT
 '8:00:00' AS start_time,
 '12:00:00' AS end_time,
 'Mon' AS day,
 faculty_id AS faculty_id
FROM
 faculty
WHERE
 name = 'Beck'

Selecting Office Hours

44

name start_time end_time day

Whitney 10:00:00 11:00:00 Wed

Beck 08:00:00 12:00:00 Mon

Whitney 17:00:00 18:30:00 Tue

Whitney 15:00:00 16:00:00 Fri

Anantha 09:00:00 10:30:00 Tue

Anantha 09:00:00 10:30:00 Thu

SELECT
 name, start_time, end_time, day
FROM
 office_hours, faculty
WHERE
 faculty.faculty_id = office_hours.faculty_id;

PostgreSQL only

45

Instructor Time Day

Anantha 09:00:00 to 10:30:00 Tue

Anantha 09:00:00 to 10:30:00 Thu

Beck 08:00:00 to 12:00:00 Mon

Whitney 10:00:00 to 11:00:00 Wed

Whitney 17:00:00 to 18:30:00 Tue

Whitney 15:00:00 to 16:00:00 Fri

SELECT
 name AS Instructor,
 TEXT(start_time) || ' to ' || TEXT(end_time) AS Time,
 day AS Day
FROM
 office_hours, faculty
WHERE
 faculty.faculty_id = office_hours.faculty_id
ORDER BY
 Name

Sample Selection

46

name start_time end_time day

Whitney 10:00:00 11:00:00 Wed

Whitney 15:00:00 16:00:00 Fri

SELECT
 name, start_time, end_time, day
FROM
 office_hours, faculty
WHERE
 faculty.faculty_id = office_hours.faculty_id
 AND
 start_time > '09:00:00'
 AND
 end_time < '16:30:00'
ORDER BY
 Name;

Joins

47

id first_name last_name

1 Roger Whitney

2 Leland Beck

3 Carl Eckberg

id user_name host person_id

1 beck cs.sdsu.edu 2

2 whitney cs.sdsu.edu 1

3 whitney rohan.sdsu.edu 1

4 foo rohan.sdsu.edu

People

Email_Addresses

Inner Join

48

first_name last_name user_name host

Leland Beck beck cs.sdsu.edu

Roger Whitney whitney cs.sdsu.edu

Roger Whitney whitney rohan.sdsu.edu

select
 first_name, last_name, user_name, host
from
 people, email_addresses
where
 people.id = email_addresses.person_id;

select
 first_name, last_name, user_name, host
from
 people inner join email_addresses
on
 (people.id = email_addresses.person_id);

Only uses entries linked in two tables

Outer Left Join

49

first_name last_name user_name host

Leland Beck beck cs.sdsu.edu

Roger Whitney whitney cs.sdsu.edu

Roger Whitney whitney rohan.sdsu.edu

Carl Eckberg

select
 first_name, last_name, user_name, host
from
 people left outer join email_addresses
on
 (people.id = email_addresses.person_id);

Use all entries from the left table

Right Outer Join

50

first_name last_name user_name host

Leland Beck beck cs.sdsu.edu

Roger Whitney whitney cs.sdsu.edu

Roger Whitney whitney rohan.sdsu.edu

foo rohan.sdsu.edu

select
 first_name, last_name, user_name, host
from
 people right outer join email_addresses
on
 (people.id = email_addresses.person_id);

Use all entries from the right table

A right outer join B == B left outer join A

51

select
 first_name, last_name, user_name, host
from
 email_addresses left outer join people
on
 (people.id = email_addresses.person_id);

select
 first_name, last_name, user_name, host
from
 people right outer join email_addresses
on
 (people.id = email_addresses.person_id);

The following two statements are equivalent

Normal forms

52

Defined by Dr. E. F. Codd in 1970

Reduce redundant data and inconsistencies

First Normal Form (1NF)

53

Name OfficeHour1 OfficeHour2 OfficeHour3

Whitney 10:00-11:00 W 17:00-18:30 Tu 15:00-16:00 Fri

Beck 8:00-12:00 M

Anantha 9:00-10:30 Tu 9:00-10:30 Thu

What if someone has more than 3 office hours?
Wasted space for those that have fewer office hours

Not is 1NF since office hours are repeated

An entity is in the first normal form when all its attributes are single valued

In 1NF

54

name faculty_id

Whitney 1

Beck 2

Anantha 3

start_time end_time day faculty_id office_hour_id

10:00 11:00 Wed 1 1

8:00 12:00 Mon 2 2

17:00 18:30 Tue 1 3

9:00 10:30 Tue 3 4

9:00 10:30 Thu 3 5

15:00 16:00 Fri 1 6

Office Hours

Faculty

Second Normal Form (2NF)

55

cd_title artist music_type cd_id

Songs from the Trilogy Glass Modern Classical 1

I Stoten Falu Spelmanslag Swedish 2

Photographer Glass Modern Classical 3

An entity is in the second normal form if:

 It is in 1NF and
 All non-key attributes must be fully dependent on the entire primary key

Table is not in 2NF since different CDs

 Can have the same artists
 Can have same music type

Example 2

56

Name Time Days Term Schedule Number

CS635 1700-1815 MW Spring01 9461

CS651 1700-1815 MW Spring01 9472

CS672 1700-1815 MW Spring01 9483

CS683 1830-1945 MW Spring01 9494

CS696 1530-1645 MW Spring01 9505

CS696 1830-1945 MW Spring01 9516

CS696 1530-1645 TTh Spring01 9520

At SDSU the schedule number uniquely identifies a course in a semester
So the term and schedule number uniquely identifies a course at SDSU
We can use term and schedule as the primary key

The table is in 1NF but not 2NF

Name, Time and Days are not fully dependent on the primary key

57

course_id time_id term_id schedule_number

1 1 2 9461

2 1 2 9472

3 1 2 9483

4 2 2 9494

course title name_id

CS635 Adv Obj Orient Dsgn Prog 1

CS651 Adv Multimedia Systems 2

CS683 Emerging Technologies 3

CS696 Writing Device Drivers 4

start_time end_time days time_id

17:00:00 18:15:00 MW 1

18:30:00 19:45:00 MW 2

15:30:00 16:45:00 MW 3

15:30:00 16:45:00 TTh 4

Etc.

TimeCourses

Schedule
semester year term_id

Fall 2000 1

Spring 2001 2

Term

Schedule in 2NF

Comments about Previous Slide

58

The schedule table is now in 2NF

What about the other tables?

If not how would you fix them?

Can you find a better way to decompose the original table?

Third Normal Form (3NF)

59

Name Address City State Name State abbreviation zip id

An entity is in third normal form if

 It is in 2NF and
 All non-key attributes must only be dependent on the primary key

State abbreviation depends on State Name

Table is not in 3NF

Customer

