
CS 580 Client-Server Programming
Spring Semester, 2009

Doc 3 Intro to Client-Server
Jan 29, 2009

Copyright ©, All rights reserved. 2009 SDSU & Roger Whitney, 5500 Campanile 
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml
http://www.opencontent.org/opl.shtml


Reading

2

Java
Java Network Programming, Harold 3rd Ed, 

Chapter 4 & 10

Ruby
Programming Ruby, Thomas, 2'ed

Chapter 10 Basic Input & Output
Class IO documentation (pp 503-515)
IPSocket & TCPSocket in Appendix A

Smalltalk
BasicLibraries.pdf in VisualWorks docs directory

Chapter 9, Socket Programming,
Chapter 2, Streams, BasicLibraries.pdf



Network Overview

3

Messages divided into packets

Each packet routed separately

Routing Issues

Overhead issues



UDP

4

Fast

Packets are treated individually
Packets may arrive out of order
Packets may be lost

Client & Server must handle resulting problems

Used by:

 Games
 NFS



TCP

5

Handles lost packets

Handles packet order

TCP has delays
 Starting of connection
 Closing of connection
 Resending packets

Client & Sever don't have to deal with
Packet order
Packet loss



IP Addresses

6

IP address is currently a 32-bit number

 130.191.3.100  (Four 8 bit numbers)

IPv6 uses 128 bit numbers for addresses

 105.220.136.100.0.0.0.0.0.0.18.128.140.10.255.255

 69DC:8864:0:0:0:1280:8C0A:FFFF

 69DC:8864::1280:8C0A:FFFF

Machines on a network need a unique IP address



7

What is the difference between
 MAC address
 IP address



Domain Name System (DNS)

8

Maps machine names to IP addresses

Internet Corporation for Assigned Names and Numbers (ICANN http://
www.icann.org/) oversees assigning TLDs

Graphic is from http://en.wikipedia.org/wiki/Domain_name_system

http://www.icann.org
http://www.icann.org
http://www.icann.org
http://www.icann.org


Unix "host" command

9

Shows mapping between machine names and IP address

->host rohan.sdsu.edu
rohan.sdsu.edu has address 130.191.3.100

->host 130.191.3.100
100.3.191.130.IN-ADDR.ARPA domain name pointer rohan.sdsu.edu



Ports

10

TCP/IP supports multiple logical communication channels called ports

Ports are numbered from 0 - 65535

A connection between two machines is uniquely defined by:

 Protocol (TCP or UDP)
 IP address of local machine
 Port number used on the local machine
 IP address of remote machine
 Port number used on the remote machine



How Ports Work

11

App 1

App 2

App 3

22
193

5494

Port Table

Network

Server

When a client connects to a server is has to specify a machine and a port. The OS on the server keeps a table of port numbers 
and applications (sockets from the program) associated with each port number. When a client request comes in the OS will 
forward the request to the socket associated with the port number if one is associated (connected) with the port. A similar thing 
happens on the client side. When you open a socket on the client to connect to the server, the client socket is assigned a port on 
the client machine. When the server responds to the client it sends the response to that port on the client machine.



Some Port Numbers

12

Well known Ports 1-1023

Registered Ports 1024-49151

Dynamic/Private Ports 49152-65535

Service Port

echo 7

discard 9

ftp 21

ssh 22

telnet 23

smtp 25

time 37

http 80

pop 110

https 443

doom 666

mysql 3306

postgresql 5432

gnutella
6346
6347

For a local list of services
file://rohan.sdsu.edu/etc/services 

For a complete list see:
http://www.iana.org/assignments/port-numbers

See IANA numbers page http://www.iana.org/
numbers.html  for more information about protocol 
numbers and assignment of services

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.iana.org/numbers.html
http://www.iana.org/numbers.html
http://www.iana.org/numbers.html
http://www.iana.org/numbers.html


What is Telnet?

13

Client

Telnet

Server

Protocol
Send text between client & server

Server
Requests login
Sends text to shell to be executed
Returns result of commands

Client
Transfers text between user and server



Telnet & Other Text-based Protocols

14

rohan 37 -> telnet www.eli.sdsu.edu 80
GET  /courses/spring06/cs580/index.html   HTTP/1.0 <CR>
<CR>

Note <CR> indicates were you need to hit return

rohan 38->telnet cs.sdsu.edu 110
Trying 130.191.226.116...
Connected to cs.sdsu.edu.
Escape character is '^]'.
+OK QPOP (version 3.1.2) at sciences.sdsu.edu starting.  
USER whitney
+OK Password required for whitney.
PASS typeYourPasswordHere
+OK whitney has 116 visible messages (0 hidden) in 640516 octets.



Simple Date Example - Protocol

15

Client Commands Server Response

"date" ended by line feed
"date\n"

current date ended by line feed
"January 30, 2007\n"

"time" ended by line feed
"time\n"

Current time ended by line feed
"6:58 pm\n"

Server listens for an incoming request

On request 
 reads command 
 returns response
 closes connection

On client errors - action not specified



Beware

16

Can only send bytes across network

Client & server maybe different hardware platforms

 What is a newline?

End-of-file indicates connection is closed



Sample Java Client

17

import java.io.*;
import java.net.Socket;

class DateClient {
 String server;
 int port;
 
 public DateClient(String serverAddress, int port) {
  server = serverAddress;
  this.port = port;
 }

 public String date() {
  return send("date\n");
 }

 public String time() {
  return send("time\n");
 }



Java Client Continued

18

 private String send(String text) {
  try {
   Socket connection = new Socket(server, port);
   OutputStream rawOut = connection.getOutputStream();
   PrintStream out = new PrintStream(new BufferedOutputStream(rawOut));
   InputStream rawIn = connection.getInputStream();
   BufferedReader in = new BufferedReader(new 
InputStreamReader(rawIn));

   out.print(text);
   out.flush();
   String answer = in.readLine();
   out.close();
   in.close();
   return answer; 
  }
  catch (IOException e) {
   return "Error in connecting to server";
  }
 }
}

Bad very bad - using PrintStream for network code.



Running the Client

19

  System.out.println("hi");
  DateClient client = new DateClient("127.0.0.1", 4444);
  System.out.println( client.date());
  System.out.println( client.time());



Issue - Avoid Small Packets

20

OutputStream rawOut = connection.getOutputStream();
PrintStream out = new PrintStream(new BufferedOutputStream(rawOut));

Use buffers 



Issue - Actually Send the request

21

out.flush();



Issue - Client will not work on all platforms

22

String answer = in.readLine();

What ends a line?



Don't Do this

23

String answer = in.readLine();

I did it to keep the example small. One can not get much code on a slide using 24 point font. Plus the Ruby example is sorter 
than this.



Issue - Close the connection when done

24

out.close();
in.close();



Issue - Testing

25

How does one test the client?



Issue - Background material

26

Java
Streams 
 Read Chapter 4

Sockets
 Read Chapter 10

Java Network Programming, Harold 3rd Ed



Ruby Client

27

require 'socket'

class DateClient
    def initialize(serverAddress, port)
      @server = serverAddress
      @port = port
    end
 
    def date()
      send("date\n")
    end
  
    def time()
      send("time\n")
    end

  private 
    def send(text)
      connection = TCPSocket.new(@server, @port)
      connection.send(text, 0)
      answer = connection.gets("\n")
      connection.close
      answer
    end
end

Running the client

client = DateClient.new("127.0.0.1", 4444)
puts client.date
puts client.time



Issues - Using Standard IO Methods

28

def send(text)
    connection = TCPSocket.new(@server, @port)
    connection.print(text)
    connection.flush
    answer = connection.gets("\n")
    connection.close
    answer
  end



Ruby Background

29

Sockets

Read IPSocket & TCPSocket in Appendix A 

IO

Chapter 10 Basic Input & Output
Class IO documentation (pp 503-515)

Programming Ruby, Thomas, 2'ed



Smalltalk Client

30

Smalltalk defineClass: #NonGUITimeDateClient
 superclass: #{Core.Object}
 instanceVariableNames: 'port server '

Class Method
server: aMachineAddress port: anInteger
 ^self new setServer: aMachineAddress port: anInteger

Instance Methods
setServer: aMachineAddress port: anInteger
 server := aMachineAddress.
 port := anInteger

date
  ^self send: 'date'.

time
 ^self send: 'time'



Smalltalk Client

31

send: message 
 | input timeSocket response |
 timeSocket := SocketAccessor 
         newTCPclientToHost:  server 
         port:  port asNumber.
 input := timeSocket readAppendStream.
 input
  nextPutAll: message;
  cr;
  commit.
 response := input upTo: Character lf.
 input close.
 ^response



Smalltalk Background

32

Sockets

Chapter 9, Socket Programming, BasicLibraries.pdf 
VisualWorks docs directory

IO

Chapter 2, Streams, BasicLibraries.pdf



Server

33

Basic Algorithm

while (true) {
   Wait for an incoming request;
   Perform whatever actions are requested;
 }



Basic Server Issues

34

How to wait for an incoming request?
How to know when there is a request?
What happens when there are multiple requests?
How do clients know how to contact server?
How to parse client request?
How do we know when the server has the entire request?



Java Date Server

35

public class DateServer {
 private static Logger log = Logger.getLogger("dateLogger");
 
     public static void main (String args[]) throws IOException {
  ProgramProperties flags = new ProgramProperties( args);
  int port = flags.getInt( "port" , 8765);
        new DateServer().run(port);
     }
 
 public void run(int port) throws IOException {
  ServerSocket input = new ServerSocket( port );
  log.info("Server running on port " + input.getLocalPort());

  while (true) {
   Socket client = input.accept();
   log.info("Request from " + client.getInetAddress());
   processRequest( 
    client.getInputStream(),
    client.getOutputStream());
   client.close();
  }
 }



Java Date Server Continued

36

void processRequest(InputStream in,OutputStream out)
  throws IOException {
  
  BufferedReader parsedInput = 
    new BufferedReader(new InputStreamReader(in));

  boolean autoflushOn = true;
  PrintWriter parsedOutput = new PrintWriter(out,autoflushOn);

  String inputLine = parsedInput.readLine();

  if (inputLine.startsWith("date")) {
   Date now = new Date();
   parsedOutput.println(now.toString());
  }
 }
}

This server needs work



Starting the Server

37

rohan 16-> java -jar DateServer.jar 
Feb 19, 2004 10:56:59 AM DateServer run
INFO: Server running on port 8765



Ruby Date Server

38

require 'socket'

class DateServer
  def initialize(port)
    @port = port
  end
  
  def run()
    server = TCPServer.new( @port)
    puts("start " + @port.to_s)
    while (session = server.accept)
      Thread.new(session) do |connection|
        process_request_on(connection)
        connection.close
      end
    end
  end

private
  def process_request_on(socket)
    request = canonical_form( socket.gets("\n") )
    now = Time.now
    answer = case request
      when 'time'
        now.strftime("%X")
      when 'date'
        now.strftime("%x")
      else
        "Invalid request"
    end
    socket.send(answer + "\n",0)
  end

  def canonical_form(string)
    string.lstrip.rstrip.downcase
  end
end

Text



Smalltalk Date Server

39

Smalltalk defineClass: #SimpleDateServer
 superclass: #{Core.Object}
 instanceVariableNames: 'serverSocket activeProcess port isRunning '

Class Method
port: anInteger
 ^super new setPort: anInteger

Instance Methods
setPort: anInteger 
 port :=anInteger.
 isRunning :=false.
 connectionCount := 0.

isRunning
 ^isRunning



Smalltalk Date Server

40

start
 serverSocket := SocketAccessor newTCPserverAtPort: port.
 serverSocket
  listenFor: 4;
  soReuseaddr: true.
 isRunning :=true.
 connectionCount :=0.
 activeProcess := [self run] forkAt: Processor lowIOPriority

stop
 isRunning 
  ifTrue: 
   [activeProcess terminate.
   serverSocket close.
   activeProcess := nil.
   serverSocket := nil].
 isRunning := false



Smalltalk Date Server

41

run
 | childSocket clientIOStream |
 
 [childSocket := serverSocket accept.
 clientIOStream := childSocket readAppendStream.
 clientIOStream lineEndTransparent.
 [self processRequestOn: clientIOStream] 

forkAt: Processor userBackgroundPriority ] repeat



Smalltalk Date Server

42

processRequestOn: anReadAppendStream 
 | clientRequest answer dateAndTime |
 connectionCount :=connectionCount + 1.
 clientRequest := (anReadAppendStream next: 4) asLowercase.
 answer := ''.
 dateAndTime := Time dateAndTimeNow.
 (clientRequest sameAs: 'date') 
  ifTrue: [answer := dateAndTime first printString].
 (clientRequest sameAs: 'time') 
  ifTrue: [answer := dateAndTime last printString].
 anReadAppendStream
  nextPutAll: answer;
  nextPut: Character lf;
  cr;
  commit;
  close



Issue - Date Format

43

What format does the server use for time and date?

Clients need to know so can parse them


