
 - 1 -

Voting Server- Version 1.0
E. Ruben Ramirez

Table of Contents
1. Introduction
2. Basic Operation
3. Authorization Matrix
4. Connecting
5. Commands

a. LOGIN
b. POLL-STATUS
c. POLL-TOTALS
d. REGISTER
e. LIST-OPEN
f. VOTE
g. VOTE-STATUS
h. LIST-CLOSED
i. ADD-POLL
j. ADD-MONITOR
k. QUIT

6. Error Codes
7. Sample session.

Protocol Version 1

 - 2 -

1. Introduction

The Voting Server (VS) is a server that allows users to be able vote for a specific
item in an active poll. There is a monitor that is able to create polls. A poll
is active for a specified amount of time and only registered users or monitors are
able to vote in the active poll. To become a register user an anonymous user
registers and once the user is registered they become a registered user and can
start voting in active polls. Below is an Authorization Matrix that lists which
users have access to what commands and the definition of each command.

2. Basic Operation

The server host starts the VS (Voting Server) by listening on an assigned port.
When a client wants to connect it establishes a TCP connection with the host. When
the connection is established, the VS server sends the version number of the server
currently running. From then the client issues commands and the server responds to
them. The connection is active until the user issues a QUIT command or the
connection is lost.

Messages are sent back and form from the client and server by having the parameter
name followed by a semicolon then the data for that parameter followed by a
carriage return. A message is terminated by two carriage returns. A carriage
return is denoted by “<CR>”.

Example:
 command:LOGIN<CR>
 user:Andrew@sdsu.edu<CR>
 pass:hello<CR><CR>

A value that will be supplied by the client or server is specified as “<value>”.
Below is the same example as the above command but with the values for user and
pass will be filled in by the client or server depending on who is sending the
message.

Example:
 command:LOGIN<CR>
 user:<email><CR>
 pass:<password><CR><CR>

Commands in the VS server are uppercase. All data sent is ASCII text and dates are
specified as MM-DD-YYYY format.

3. Authorization Matrix
List of commands and the users that are allowed to execute the commands. Details
about each command are explained in detail in the Commands section.

 Anonymous Registered Monitor Admin
LOGIN X
POLL-STATUS X X X
POLL-TOTALS X X X
REGISTER X
LIST-OPEN X X
VOTE X X
VOTE-STATUS X X
LIST-CLOSED X X
ADD-POLL X
ADD-MONITOR X
QUIT X X X X

 - 3 -

Each message received from the server contains a return code. If there is an error
processing the request then the message only contains the return code value. Each
message is terminated with two carriage returns.

4. Connecting

The connection to the server is statefull. When a user connects to the server
the user is assumed to be an anonymous user. An anonymous user can send a
LOGIN command or a REGISTER command. Once the user issues a LOGIN or REGISTER
command then the user becomes a registered, monitor or admin user depending on
the type of user who logged in. When a connection is established the server
sends the following:

version:1.0<CR><CR>

Signifying that the version of the server is one point zero. A version 1.10 is
greater than a version 1.1.

5. Commands – Below are the following commands that are available for the Voting
Server.

a. LOGIN
b. POLL-STATUS
c. POLL-TOTALS
d. REGISTER
e. LIST-OPEN
f. VOTE
g. VOTE-STATUS
h. LIST-CLOSED
i. ADD-POLL
j. ADD-MONITOR
k. QUIT

 - 4 -

LOGIN
In order to become a registered, monitor or admin user you have to send a
login command. Upon first connecting to the system you are an anonymous user
and only have access rights that an anonymous user has.

CLIENT SERVER

command:LOGIN<CR>
email:<email><CR>
pass:<password><CR>
<CR>

return-code:<return-code><CR>
<CR>

Return-code

0-Success
100-Invalid login attempt
125-Server error
127-User already logged in

Example:
Client:

command:LOGIN<CR>
user:andrew@sdsu.edu<CR>
pass:hello<CR><CR>

Server:
return-code:0<CR><CR>

POLL-STATUS

Requests the status of the polls/elections, that is if they are open or
closed.

CLIENT SERVER
command:VOTE-STATUS<CR>
<CR>

return-code:<return-code><CR>
poll-id:<poll-id><CR>
label:<label><CR>
status:<status><CR>
...
poll-id:<poll-id><CR>
label:<label><CR>
status:<status><CR>
<CR>

Return-code
 0 - Success

125 – Server error

poll-id
The unique id identifying this poll

label
The label describing the poll

status
 open
 closed

Example:
Client:

command:VOTE-STATUS<CR><CR>
Server:

return-code:0<CR>
poll-id:100<CR>
label:Vote for your favorite programming language<CR>
status:open<CR>
poll-id:120<CR>
label:Vote for your favorite scripting language<CR>
status:closed<CR><CR>

 - 5 -

POLL-TOTALS
Requests the total for a given poll/election. Anonymous users can only view
totals for an active poll. Registered users can view totals for active and
closed polls.

CLIENT SERVER

Command:POLL-TOTALS<CR>
id:<id><CR>
<CR>

return-code:<return-code><CR>
<option1>:<total1><CR>
<option2>:<total2><CR>
...
<optionN>:<totalN><CR><CR>

Return-code
 0 - Success

125 – Server error
130 – Access denied, not authorized for given poll.

Example:
Client:

command:VOTE-TOTAL<CR>
id:125<CR><CR>

Server:
return-code:0<CR>
c++:100<CR>
java:245<CR>
C#:82<CR>
assembly language:14<CR><CR>

REGISTER

The register command registers an anonymous user. A successful registration
requires that the email and nickname be unique in the system. If the
registration is successful the users session changes from anonymous user to
registered user and has access rights according to the authorization matrix.

CLIENT SERVER
command:REGISTER<CR>
user:<email><CR>
pass:<password><CR>
nick:<nickname><CR>
<CR>

return-code:<return-code><CR>
<CR>

Return-code
 0 - Success

120- Invalid email
121- Duplicate email
122- Duplicate nickname
125- Server error
126- User not authorized

Example:
Client:

command:REGISTER<CR>
user:andrew@sdsu.edu<CR>
pass:hello<CR>
nick:andrew<CR><CR>

Server:
return-code:0<CR><CR>

 - 6 -

LIST-OPEN
Requests all the open polls/elections. Each poll has the following
attributes: id (unique), label, description, start-date, end-date and
options. Options is a comma separated list of items that a user can vote on.

CLIENT SERVER

command:LIST-OPEN<CR>
<CR>

return-code:<return-code><CR>
poll-id:<poll-id><CR>
label:<label><CR>
description:<description><CR>
start-date:<start-date><CR>
end-date:<end-date><CR>
options:<options><CR>
...
poll-id:<poll-id><CR>
label:<label><CR>
description:<description><CR>
start-date:<start-date><CR>
end-date:<end-date><CR>
options:<options><CR>
<CR>

Return-code
 0 - Success

125- Server error
126- User not authorized

Example:
Client:

command:LIST-OPEN<CR><CR>
Server:

return-code:0<CR>
poll-id:120<CR>
label:Vote for your favorite programming language<CR>
description:Poll to determine which is the favorite programming
language for January<CR>
start-date:01-12-2007<CR>
end-date:01-31-2007<CR>
options:c++,java,cobol,fortran,assembly language<CR>
poll-id:121<CR>
label:Vote for your favorite scripting language<CR>
description: Poll to determine which is the favorite scripting language
for January<CR>
start-date:01-12-2007<CR>
end-date:01-31-2007<CR>
options:javascript,actionscript,php,perl<CR><CR>

 - 7 -

VOTE
Cast a vote for a particular poll. If the user already voted for the given
poll then the new vote replaces the old one.

CLIENT SERVER
command:VOTE<CR>
poll-id:<poll-id><CR>
option:<option>
<CR>

return-code:<return-code><CR>
<CR>

Return-code
 0 - Success

125 – Server error
126 – User not authorized
144 – Invalid vote, option does not exist

Example:
Client:

command:VOTE<CR>
poll-id:120<CR>
option:java<CR><CR>

Server:
return-code:0<CR><CR>

VOTE-STATUS

Request the vote status for a given poll. That is, if the user has voted in
the poll and which option was the vote applied to. If the user voted in a
poll then the option is the item the user voted on. If the user did not vote
in the given poll then option is blank.

CLIENT SERVER

command:VOTE-STATUS<CR>
poll-id:<poll-id><CR>
<CR>

return-code:<return-code><CR>
option:<option><CR>
<CR>

Return-code
 0 - success

125 – Server error
126 – user not authorized

Example of a user who has
already voted for java:

Client:

command:VOTE-STATUS<CR>
poll-id:120<CR>
<CR>

Server:
return-code:0<CR>
option:java<CR><CR>

Example of a user who has not voted:

Client:

command:VOTE-STATUS<CR>
poll-id:125<CR>
<CR>

Server:
return-code:0<CR>
option:<CR><CR>

 - 8 -

LIST-CLOSED
Requests all the closed polls/elections. Each poll has the following
attributes: poll-id (unique), label, description, start-date, end-date and
options.

Options contains a comma separated list of items that a user voted on and the
total for that item. The format for options is specified below:
<options>=<option-name1>:<option-total1>,…,<option-nameN>:<option-totalN>

CLIENT SERVER
command:LIST-CLOSED<CR>
<CR>

return-code:<return-code><CR>
poll-id:<poll-id><CR>
label:<label><CR>
description:<description><CR>
start-date:<start-date><CR>
end-date:<end-date><CR>
options:<options><CR>
...
poll-id:<poll-id><CR>
label:<label><CR>
description:<description><CR>
start-date:<start-date><CR>
end-date:<end-date><CR>
options:<options><CR>
<CR>

Return-code
 0 - Success

125 – Server error
126 – User not authorized

Example:
Client:

command:LIST-CLOSED<CR><CR>
Server:

return-code:0<CR>
poll-id:120<CR>
label:Vote for your favorite programming language.<CR>
description: Poll to determine which is the favorite programming
language for January<CR>
start-date:01-01-2007<CR>
end-date:01-31-2007<CR>
options:c++:10,java:40,cobol:4,assembly language:2<CR>
poll-id:130<CR>
label:Vote for your favorite scripting language.<CR>
description: Poll to determine which is the favorite scripting language
for January<CR>
start-date:01-01-2007<CR>
end-date:01-31-2007<CR>
options:javascript:105,perl:80,actionscript:35<CR><CR>

 - 9 -

ADD-POLL
Adds a poll/election. Each poll has the following attributes: poll-id
(unique), label, description, start-date, end-date and options. Two polls
with the same label can not be active at the same time. A poll is said to be
active if the current date is between the start-date and end-date. A poll
with the same label can not have a start-date or end-date that falls within
another poll’s start-date and end-date that share equal label names.

CLIENT SERVER
command:ADD-POLL<CR>
label:<label><CR>
description:<description><CR>
start-date:<start-date><CR>
end-date:<end-date><CR>
options:<options><CR>
<CR>

return-code:<return-code><CR>
poll-id:<poll-id><CR>
<CR>

Return-code

While most of these errors can be checked on the client side, the
server still checks that the dates are valid.

 0 - Success
 140- Active poll with current label already exists.
 141- End-Date is prior to start-date.
 142- End-Date has already passed no voting can take place.

143- Start-Date has to be set to current-date or some future date.
125– Server error
126– User not authorized

label
 The name of the poll. Maximum of 255 characters.

description

Maximum of 1024 characters.

start-date

The date the poll will be active. MM-DD-YYYY format

end-date

The last day the poll will be active. MM-DD-YYYY format

options
contains a comma separated list of items that a user voted on and the
total for that item. The format for options is specified below:
<options>=<option-name1>,…,<option-nameN>. The maximum length for each
individual option is 255 characters.

Example:
Client:

command:ADD-POLL<CR>
label:Vote for your favorite programming language.<CR>
description: Poll to determine which is the favorite programming
language for January<CR>
start-date:01-01-2007<CR>
end-date:01-31-2007<CR>
options:c++,java,cobol,assembly language<CR><CR>

Server:
return-code:0<CR>
poll-id:120<CR><CR>

 - 10 -

ADD-MONITOR
Adds a monitor to the system. Only a system administrator can add a monitor
to the system. Email and nickname are unique. No two users can be
registered having the same email or nickname.

CLIENT SERVER
command:ADD-MONITOR<CR>
email:<email><CR>
pass:<password><CR>
nick:<nickname><CR>
<CR>

return-code:<return-code><CR>
<CR>

Return-code
 0 - Success

120- Invalid email
121- Duplicate email
122- Duplicate nickname
126- User not authorized

email

Email used to login to the system. Maximum length 255 characters.

password

Password used to authenticate. Maximum length 24 characters.

nickname
 Maximum length 20 characters.

QUIT
Closes the connection.

CLIENT SERVER
command:QUIT<CR><CR>

Return-code:0<CR><CR>

Return-code
 0 - success

125- server error

 - 11 -

6. Error Codes
 0- Success
100- Invalid login attempt
120- Invalid email
121- Duplicate email
122- Duplicate nickname
125- Server error
126- User not authorized
127- User already logged in
130– Access denied, not authorized for given poll
140- Active poll with current label already exists
141- End-Date is prior to start-date
142- End-Date has already passed no voting can take place
143- Start-Date has to be set to current-date or some future date
144- Invalid Vote, option does not exist
145- Invalid Command

An error code of 125 that is Server error means that there was a problem with
the server processing the command. If the server uses a database to store
the data it could be that the database is down or some other type of error
has occurred. In this case it is up to the server administrator to fix this
type of errors.

7. Sample Session
Below is a sample session that does the following:

1. User connects
2. The anonymous user registers
3. The registered user lists the open polls.
4. The registered user votes for a given item in a poll.
5. The registered user requests a vote total for the poll he voted on.
6. The registered user checks what item he voted on.
7. The registered user votes again on the same poll but on a different item.
8. The registered user requests a vote total for the poll he voted on.
9. The registered sends a quit command.

Client:

Open tcp connection
Server:

version:1.0<CR><CR>
Client:

command:REGISTER<CR>
user:andrew@sdsu.edu<CR>
pass:hello<CR>
nick:andrew<CR><CR>

Server:
return-code:0<CR><CR>

Client:
command:LIST-OPEN<CR><CR>

Server:
return-code:0<CR>
poll-id:120<CR>
label:Vote for your favorite programming language<CR>
start-date:01-12-2007<CR>
end-date:01-31-2007<CR>
options:c++,java,cobol,fortran,assembly language<CR>
poll-id:121<CR>
label:Vote for your favorite programming language<CR>
start-date:01-12-2007<CR>
end-date:01-31-2007<CR>
options:c++,java,cobol,fortran,assembly language<CR><CR>

Client:

 - 12 -

command:VOTE<CR>
poll-id:120<CR>
option:cobol<CR><CR>

Server:
return-code:0<CR><CR>

Client:
command:VOTE-TOTAL<CR>
id:120<CR><CR>

Server:
return-code:0<CR>
c++:100<CR>
java:245<CR>
cobol:82<CR>
fortran:10<CR>
assembly language:14<CR><CR>

Client:
command:VOTE-STATUS<CR>
poll-id:120<CR><CR>

Server:
return-code:0<CR>
option:cobol<CR><CR>

Client:
command:VOTE<CR>
poll-id:120<CR>
option:java<CR><CR>

Server:
return-code:0<CR><CR>

Client:
command:VOTE-TOTAL<CR>
id:120<CR><CR>

Server:
return-code:0<CR>
c++:100<CR>
java:246<CR>
cobol:81<CR>
fortran:10<CR>
assembly language:14<CR><CR>

Client:
command:QUIT<CR><CR>

Server:
Return-code:0<CR><CR>

 Closes tcp connection
Client:

Closes tcp connection

