
CS 580 Client-Server Programming
Spring Semester, 2007

Doc 15 Security
April 10, 2007

Copyright ©, All rights reserved. 2007 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent (http://
www.opencontent.org/opl.shtml) license defines the copyright on this document.

References

2

SQL Injection - http://en.wikipedia.org/wiki/SQL_injection
Buffer Overflow - http://en.wikipedia.org/wiki/Buffer_overflow

NIH Security Web Site http://www.alw.nih.gov/Security/security.html

Applied Cryptography Second Edition, Bruce Schneier, John Wiley & Sons, 1996

Red Team versus the Agents, Scientific American, December 2000, pp. 20, 24.

Security ≠ Cryptography

3

Kevin Mitnick often got people’s passwords by asking

Some Problems Require Global Solution

4

Denial of Service Attacks

Some Bad Ideas

5

Security by Obscurity
Security in the wrong place
Authentication without checking
Back doors

Security through Obscurity

6

Security relies on encryption/authentication methods are not obvious

 Reverse the byte order of a message
 Swap bytes in some "secret" way
 Add garbage to data
 Use some "secret" algorithm

Just because you cannot break the encryption does not mean others can’t

Security in the Wrong Place

7

Regardless of what client does server must authenticate/check

Back doors

8

Programmers have the tendency to add debug code to their servers to make testing easier.

This debug code may circumvent any security features of the server.

Example - sendmail "WIZARD"

 Wizard command gave full root privileges to the user
 The default distribution had this command enabled
 The "Internet worm" used this to attack machines throughout the Internet.

Sandia National Labs Security Agents Software

 Agent software based on Lisp
 Agents could perform any Lisp string
 Agents could request other agents to perform tasks
 Intruders could masquerade as an agent

Some Common Attacks

9

Buffer Overflow
SQL Injection
Running scripts

Buffer Overflow

10

Overflow a buffer to
 change data in other variables
 Execute code from buffer

Buffer Overflow Example Code

11

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 char buffer[10];
 if (argc < 2)
 {
 fprintf(stderr, "USAGE: %s string\n", argv[0]);
 return 1;
 }
 strcpy(buffer, argv[1]);
 return 0;
}

Source http://en.wikipedia.org/wiki/Buffer_overflow

Buffer Overflow Solution 1

12

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 char buffer[10];
 if (argc < 2)
 {
 fprintf(stderr, "USAGE: %s string\n", argv[0]);
 return 1;
 }
 strncpy(buffer, argv[1], sizeof(buffer));
 buffer[sizeof(buffer) - 1] = '\0'; /* explicitly write a string terminator */
 return 0;
}

Check the Buffer Size

Buffer Overflow Solution 2

13

Use a language that checks for array out-of-bounds errors

 Java
 Smalltalk
 Ruby
 Python

SQL Injection

14

"SELECT * FROM users WHERE name = '" + userName + "';"

let username be
a’ or ‘t’ = ‘t

SELECT * FROM users WHERE name = 'a' or 't'='t';

This is always true

let username be
a’; DROP TABLE users; Select * FROM data where name = ‘a

SELECT * FROM users WHERE name = 'a' ’;
DROP TABLE users;
Select * FROM data where name = ‘a’;

Preventing SQL Injection In Java

15

Connection con = (acquire Connection)
Statement stmt = con.createStatement();
ResultSet rset = stmt.executeQuery("SELECT * FROM users WHERE name = '" + userName + "';");

Replace

with

Connection con = (acquire Connection)
PreparedStatement pstmt = con.prepareStatement("SELECT * FROM users WHERE name = ?");
pstmt.setString(1, userName);
ResultSet rset = pstmt.executeQuery();

SQl Injection examples from http://en.wikipedia.org/wiki/SQL_injection

Running Scripts

16

Some systems allow users to enter a script to be executed

If you need this be very careful on what a script can do
Text

