
2/17/05 Doc 7 Singleton slide# 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2005

Doc 7 Singleton
Contents

Singleton ... 3
Intent... 3
Motivation ... 3
Applicability... 3
Implementation ... 5

Java.. 5
C++... 7
Smalltalk... 8
Singletons and Static.. 11

Consequences.. 12
Questions for Thought... 13

Copyright ©, All rights reserved. 2005 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the
copyright on this document.

2/17/05 Doc 7 Singleton slide# 2

References

Design Patterns: Elements of Reusable Object-Oriented
Software, Gamma, Helm, Johnson, Vlissides, 1995, pp. 127-
134

The Design Patterns Smalltalk Companion, Alpert, Brown,
Woolf, Addision-Wesley, 1998, pp. 91-101

2/17/05 Doc 7 Singleton slide# 3

Singleton
Intent

Insure a class only has one instance, and provide a global point
of access to it

Motivation

There are times when a class can only have one instance

Applicability

Use the Singleton pattern when

• There must be only one instance of a class, and it must be
accessible to clients from a well-known access point

• When the sole instance should be extensible by subclassing,
and clients should be able to use an extended instance
without modifying their code

2/17/05 Doc 7 Singleton slide# 4

Examples of Using a Singleton

Java Security manager
All parts of a program must access the same security manager

Once set a security manager cannot be changed in a program

Logging the activity of a server
All parts of the server should use the same instance of the
logging system

The server should not be able to change the instance of the
logging system was it has been set

Null Object

If Null object does not have state, only need one instance

2/17/05 Doc 7 Singleton slide# 5

Implementation
Java

// Only one object of this class can be created
class Singleton

{
private static Singleton _instance = null;

private Singleton() { fill in the blank }

public static Singleton getInstance()
{
if (_instance == null)

 _instance = new Singleton();
return _instance;
}

public void otherOperations() { blank; }
}

class Program
{
public void aMethod()

{
X = Singleton.getInstance();
}

}

2/17/05 Doc 7 Singleton slide# 6

Java Singletons, Classes, Garbage Collection

Classes can be garbage collected in Java

Only happens when there are
• No references to instances of the class
• No references to the class

If a singleton's state is modified and its class is garbage
collected, its modified state is lost

To avoid having singletons garbage collected:

• Disable class garbage collection with -Xnoclassgc flag

• Insure singleton or class always has a reference

Store singleton or class in system property

2/17/05 Doc 7 Singleton slide# 7

Implementation
C++

// Only one object of this class can be created
class Singleton

{
private:

static Singleton* _instance;
void otherOperations();

protected:
Singleton();

public:
static Singleton* getInstance();

}

Singleton* Singleton::_instance = 0;

Singleton* Singleton::getInstance()
{
if (_instance == 0)

 _instance = new Singleton;
return _instance;
}

2/17/05 Doc 7 Singleton slide# 8

Implementation
Smalltalk

Smalltalk.CS635 defineClass: #SingletonExample
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: 'uniqueInstance '
imports: ''
category: 'Lecture notes'!

CS635.SingletonExample class methodsFor: 'instance creation'

current
uniqueInstance isNil ifTrue:[uniqueInstance := super new].
^uniqueInstance

new
self error: 'Use current to get an instance of Class: ' , self name

One could also use a private constant shared variable to store
the unique instance

2/17/05 Doc 7 Singleton slide# 9

Overriding new in Smalltalk

Since can control what new returns one might be tempted to
use:

new
uniqueInstance isNil ifTrue:[uniqueInstance := super new].
^uniqueInstance

This can be misleading; user might think they are getting
different objects when calling new

Do we have two different windows below or not?

| left right |
left := SingleWindow new.
Right := SingleWindow new.
left position: 100@ 100.
right position: 500@100.

2/17/05 Doc 7 Singleton slide# 10

Naming the Access Method

GOF uses: instance()

POSA 1 uses: getInstance()

Smalltalk uses default and current

Selecting names is one of the more difficult problems in object-
oriented analysis. No name is perfect1

1 Fowler pp. 9, Alpert pp. 98

2/17/05 Doc 7 Singleton slide# 11

Singletons and Static

If one needs only one instance of a class why not just
implement all methods as static?

• Classes do not inherit Object's protocol

• Hard to modify design if need more that one instance

• Builds bad habits in beginners

2/17/05 Doc 7 Singleton slide# 12

Consequences

• Controlled access to sole instance
• Reduced name space
• Permits subclassing
• Permits a variable number of instances
• More flexible than class operations
• Leads to improper use of globals

2/17/05 Doc 7 Singleton slide# 13

Questions for Thought

A number of patterns seem to violate basic design principles.
For example the Singleton does provide for global access. Most
programmers at least will state that one should not use globals.
Yet the Singleton allows one to create and use globals in a
program.

1. Go through the design patterns and determine which patterns
violate which basic design principles.

2. How does one justify the patterns violating the basic design
principles?

