3/12/05 Doc 3 lterators, slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2005
Doc 3 Iterators

Contents

[Rerator 3
Design Principle 1. 14
[SSUEBS ..o 14
Concrete vs. Polymorphic lteratorsc.c.ccoeeiiiinnni, 14
Who Controls the iteration?............ccoiiiiiiii, 15
Who Defines the Traversal Algorithm?.............c.c..ccoeeni. 17
How Robust is the iterator?...........cooooiiiiiiin 18
lterators and Privileged ACCESS........cccoevvviiiiiiiiiieeiiiceeenn, 19
lterators for Composites.........coooviiiiiiiiii e 20
NUull lterator ..., 20

Copyright ©, All rights reserved. 2004 SDSU & Roger
Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700
USA. OpenContent (http://WWW.opencontent.orq/opl.shtml) license defines
the copyright on this document.

3/12/05 Doc 3 lterators, slide # 2

References
Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson,
Vlissides, 1995, pp. 257-271

Reading

Design Patterns: pp. 257-271

Future Readings

Composite & Visitor patterns

3/12/05 Doc 3 lterators, slide # 3

Iterator

Provides a way to access elements of an aggregate object
sequentially without exposing its underlying representation

Java Example
Enumeration, Iterator, and Streams in Java are iterators
Vector listOfStudents = new Vector();
// code to add students not shown

Iterator list = listOfStudents.iterator();
while (list.hasNext())
{Student x = list.next();
System.out.println(x);

b

C# Example

Student[] listOfStudent;
// code to add students not shown

foreach (Student x in listOfStudent)

{
Console.WriteLine(x.ToString());

b

3/12/05 Doc 3 lterators, slide # 4

Smalltalk Examples

Streams, do:, select:, reject:, collect:, detect:, inject:into: are
iterators in Smalltalk

| sum |
sum := 0.
#(172393 50)do: [:each | sum := sum + each squared].

Asum

#(172393 50)inject: 0 into:
[:partialSum :number | partialSum + number squared]

'this 1s an example' select: [:each | each isVowel]

3/12/05 Doc 3 lterators, slide # 5

What's The Big Deal?

void print(ArrayList list)
{
for(int k = 0; k <list.size(); k++)
System.out.println(list.get(k));
j

void print(LinkedList list)
{
Node current = list.first();
System.out.println(current);
while (current.hasNext())
{
current = current.next();
System.out.println(current);

h
h

void print(Collection list)

{

[terator items = list.iterator();

while (items.hasNext())
{
System.out.println(items.next());
b

b

print: aCollection
aCollection do:
[:each |
Transcript
show: each;
cr]

3/12/05 Doc 3 lterators, slide # 6

What's The Big Deal?
lterator abstracts out underlying representation of collection

Programmer does not have to know implementation details of
each type of collection

Can write code that works for wide range of collects

Do not have to change code if change the type of collection
used

3/12/05 Doc 3 lterators, slide # 7

Design Principle 1
Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define
common interfaces for a set of classes

Declare variables to be instances of the abstract class not
instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of
objects they use, as long as the objects adhere to the
interface the client expects

Client classes/objects remain unaware of the classes that
implement these objects. Clients only know about the abstract
classes (or interfaces) that define the interface.

3/12/05 Doc 3 lterators, slide # 8

Programming to an Interface
Java Collections

Collection Map
“1
s
s I\

Set List |HashMap /’ Hashtable| SortedMap
I\ |
/ N RER WeakHashMap |
SortedSet | HashSet | , | \\ TreeMap
: 2
£ |) Implements
TreeSet ArrayList| | |LinkedLisf Class | _ " _"_"_
| Interface Extends

Vector

3/12/05 Doc 3 lterators, slide # 9

Java lterators & Arrays?
Arrays are common collections
How can one get an iterator on a Java array?

How would you pass an array to the following function?

void print(Collection list)

{

[terator items = list.iterator();

while (items.hasNext())
{
System.out.println(items.next());
b

b

3/12/05 Doc 3 lterators, slide # 10

Java lterators in Practice

void printA(Collection list)
{

Iterator items = list.iterator();
while (items.hasNext())
System.out.println(items.next());

b

void printB(String|[] list)
{

for (int k = 0; k < list.length; k++)
System.out.println(list[k]);
;
Programmers are not used to programming to an interface

printA requires as much typing as printB

So iterators are not used as much

3/12/05 Doc 3 lterators, slide # 11

Java lterators & JDK 1.5
JDK 1.5 (Java 5) has C# like syntax for iteration

void printName(Collection list)

{
for (Object element : list)

{
Student aStudent = (Student) element;

System.out.println(aStudent.name());

b
b

void printName(Collection<Student> list)

{

for (Student element : list)

{

System.out.println(element.name());

b
b

3/12/05 Doc 3 lterators, slide # 12

Smalltalk/C# Iterators in Practice

printA: aCollection
1 to: aCollection size do: [:index |
Transcript
show: (aCollection at: index);
ct.

printB: aCollection
aCollection do: [:each |
Transcript
show: each;
CT.

Print(IEnumerable list)

{
foreach (Object x in list)

{
Console.WriteLine(x.ToString());

b
b

printB requires less typing than printB
lterators are part of the C# language

Programmers use iterators just to avoid extra work

3/12/05 Doc 3 lterators, slide # 13

Sample Implementation of Java Enumerator

class Vectorlterator implements Enumeration {
Vector iteratee;
int count;

Vectorlterator(Vector v) {
iteratee = v;
count = 0;

b

public boolean hasMoreElements() {
return count < iteratee.elementCount;

b

public Object nextElement() {

synchronized (iteratee) {

if (count < iteratee.elementCount)
return iteratee.elementData[count++];

b
throw new NoSuchElementException("Vectorlterator");
b

b

The iterator is using privileged access to Vectors fields

3/12/05 Doc 3 lterators, slide # 14

Issues
Concrete vs. Polymorphic lterators

Concrete
Use Explicit Iterator Type
Reader iterator = new StringReader("cat");
Int c;

while (-1 != (c = iterator.read()))
System.out.println((char) c);

Polymorphic

Actual type of iterator is not known
Vector listOfStudents = new Vector();

// code to add students not shown

Iterator list = listOfStudents.iterator();

while (list.hasNext())
Console.println(list.next());

Polymorphic iterators can cause problems with memory leaks in C++ because they
are on the heap!

3/12/05 Doc 3 lterators, slide # 15

Who Controls the iteration?
External (Active)

Vector listOfStudents = new Vector();
// code to add students not shown
Iterator list = listOfStudents.iterator();

while (list.hasNext())
Console.println(list.next());

lteration control code is repeated for each use of the iterator

3/12/05 Doc 3 lterators, slide # 16

Who Controls the iteration?
Internal (Passive)

'this 1s an example' select: [:each | each isVowel]

Control code is inside the iterator
Programmer

* Does not repeat control code
e Can focus on what to do not how to do it

3/12/05 Doc 3 lterators, slide # 17

Who Defines the Traversal Algorithm?
Object being lterated

lterator can store where we are
In a Vector this could mean the index of the current item

In a tree structure it could mean a pointer to current node and
stack of past nodes

BinaryTree searchTree = new BinaryTree();

// code to add items not shown

Iterator aSearch = searchTree.getlterator();

Iterator bSearch = searchTree.getlterator();

Object first = searchTree.nextElement(aSearch);
Object stillFirst = searchTree.nextElement(bSearch);

Iterator

Makes it easier to have multiple iterator algorithms on same
type

On Vector class, why not have a reverselterator which goes
backwards?

In a complex structure the iterator may need access to the
iteratee's implementation

3/12/05 Doc 3 lterators, slide # 18

How Robust is the iterator?

What happens when items are added/removed from the
iteratee while an iterator exists?

Vector listOfStudents = new Vector();
// code to add students not shown

Enumeration list = listOfStudents.elements();
Iterator failFastList = listOfStudents.iterator();

listOfStudents.add(new Student("Roger"));

list.hasMoreElements();
failFastList.hasNext(); //Exception thrown here

3/12/05 Doc 3 lterators, slide # 19

Additional Iterator Operations

Augmenting basic iteration operations may improve their
usefulness

previous()
back up one location

add(Object item)
add item to the iteratee at current location

remove()
remove the current item from the iteratee

skipTo(some location, item or condition)
go to the location indicated

mark()
mark current location for future return

Iterators and Privileged Access

An iterator may need privileged access to the aggregate
structure for traversal

3/12/05 Doc 3 lterators, slide # 20

Iterators for Composites

Traversing a complex structure like a graph, tree, or
composite can be difficult

An internal iterator can use recursion to keep track of where to
go next

For example using a depth-first search algorithm on graph
If each element in the aggregate “knows” how to traverse to

the next element and previous element, than an external
iterator can be used

Null lterator

A Null iterator for the empty aggregates can be useful
of each.

