
1/25/05 Doc 1 Introduction slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2005

Doc 1 Introduction
Contents

Reading Assignment ... 3
What is this Course About? ... 4
Reading Smalltalk ... 5

The Weird Stuff ... 6
Coupling & Cohesion... 10

Coupling.. 10
Cohesion... 10

Design Patterns Intro... 11
Examples of Patterns.. 12

A Place To Wait .. 12
Chicken And Egg.. 14

Benefits of Software Patterns.. 15
Common Forms For Writing Design Patterns 16
Design Principle 1 ... 17
Design Principle 2 ... 19

Refactoring .. 22
The Broken Window.. 23
The Perfect Lawn.. 24
Familiarity verse Comfort .. 25
Refactoring.. 26
Sample Refactoring: Extract Method 27

Motivation ... 27
Mechanics .. 28
Example.. 30

Copyright ©, All rights reserved. 2004 SDSU & Roger Whitney,
5500 Campanile Drive, San Diego, CA 92182-7700 USA.

1/25/05 Doc 1 Introduction slide # 2

OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document

1/25/05 Doc 1 Introduction slide # 3

References

Refactoring: Improving the Design of Existing Code, Fowler, 1999,
pp. 110-116, 237-270

The Pragmatic Programmer, Hunt & Thomas, Addison Wesley
Longman, 2000

Quality Software Management Vol. 4 Anticipating Change, Gerald
Weinberg, Dorset House Publishing, 1997

Patterns for Classroom Education, Dana Anthony, pp. 391-406,
Pattern Languages of Program Design 2, Addison Wesley, 1996

A Pattern Language, Christopher Alexander, 1977

Software Patterns, James Coplien, 1996, 2000, http://www1.bell-
labs.com/user/cope/Patterns/WhitePaper/

Design Patterns: Elements of Reusable Object-Oriented Software,
Gamma, Helm, Johnson, Vlissides, 1995

Reading Assignment

Abstraction, Encapsulation, and Information Hiding available at:
http://www.toa.com/shnn?searticles

Design Patterns chapter 1.

1/25/05 Doc 1 Introduction slide # 4

What is this Course About?

Writing quality OO code

Some basic tools:

• Abstraction
• Information Hiding
• Encapsulation
• Unit Testing
• Coupling & Cohesion
• Design Patterns
• Refactoring

1/25/05 Doc 1 Introduction slide # 5

Reading Smalltalk
OOPS Rosette Stone

Java Smalltalk
this self
super super
Field Instance variable
Method Method, message
"A String" 'A String'
/* a comment */ " a comment"
x = 5; x := 5.
x == y x == y
x.equals(y) x = y
if (y > 3)

x = 12;
y > 3

ifTrue: [x := 12].
if (y > 3)

x = 12;
else

x = 9;

y > 3
ifTrue: [x := 12]
ifFalse: [x := 3].

z = Point(2, 3); z := 2 @ 3.
Circle x = new Circle();
Circle y = new Circle(0, 0 3);

| x y |
x := Circle new.
Y := Circle origin 0 @ 0 radius: 3

a.method() a method
a.foo(x) a foo: x
a.substring(4,7) a copyFrom: 4 to: 7
return 5; ^5.

Java Smalltalk
class Circle {

public float area() {
return this.radius().squared() * pi();

}
}

Circle>>area
^self radius squared * self pi

Note Class>>method is not Smalltalk syntax. It is just a convention to show which
class contains the method

1/25/05 Doc 1 Introduction slide # 6

 The Weird Stuff
Methods - No Argument

C/C++/Java Smalltalk
method() method

Java
public class LinkedListExample

{
public static void main(String[] args)

{
LinkedList list = new LinkedList();
list.print();
}

}

Smalltalk
| list |
list := LinkedList new.
list print.

1/25/05 Doc 1 Introduction slide # 7

Methods - One Argument

C/C++/Java Smalltalk
method(argument) method: argument

Java
public class OneArgExample

{
public static void main(String[] args)

{
System.out.println("Hi mom");
}

}

Smalltalk

Transcript show: 'Hi Mom'.

1/25/05 Doc 1 Introduction slide # 8

Methods - Multiple Arguments

C/C++/Java Smalltalk
method(arg1, arg2, arg3) method: arg1

second: arg2
third: arg3

Java
public class MultipleArgsExample

{
public static void main(String[] args)

{
String list = "This is a sample String";
list.substring(2, 8);
}

}

Smalltalk
| list |
list := 'This is a sample String'.
list

copyFrom: 2
to: 8

1/25/05 Doc 1 Introduction slide # 9

Cascading Messages

Transcript
show: 'Name: ';
show: _name;
cr;
show: 'Amount: ';
show: outstanding;
cr.

Is short hand notation for:

Transcript show: 'Name: '.
Transcript show: _name.
Transcript cr.
Transcript show: 'Amount: '.
Transcript show: outstanding.
Transcript cr.

1/25/05 Doc 1 Introduction slide # 10

Coupling & Cohesion
Coupling

Strength of interaction between objects in system

Cohesion

Degree to which the tasks performed by a single module are
functionally related

1/25/05 Doc 1 Introduction slide # 11

Design Patterns Intro
What is a Pattern?

"Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice"

"Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem, and a solution"

Christopher Alexander on architecture patterns

"Patterns are not a complete design method; they capture
important practices of existing methods and practices
uncodified by conventional methods"

James Coplien

1/25/05 Doc 1 Introduction slide # 12

Examples of Patterns
A Place To Wait1

The process of waiting has inherent conflicts in it.

Waiting for doctor, airplane etc. requires spending time
hanging around doing nothing

Cannot enjoy the time since you do not know when you
must leave

Classic "waiting room"
• Dreary little room
• People staring at each other
• Reading a few old magazines
• Offers no solution

Fundamental problem
• How to spend time "wholeheartedly" and
• Still be on hand when doctor, airplane etc arrive

Fuse the waiting with other activity that keeps them in
earshot
• Playground beside Pediatrics Clinic
• Horseshoe pit next to terrace where people waited

Allow the person to become still meditative
• A window seat that looks down on a street
• A protected seat in a garden
• A dark place and a glass of beer
• A private seat by a fish tank

1 Alexander 1977, pp. 707-711

1/25/05 Doc 1 Introduction slide # 13

A Place To Wait
Therefore:

"In places where people end up waiting create a situation
which makes the waiting positive. Fuse the waiting with
some other activity - newspaper, coffee, pool tables,
horseshoes; something which draws people in who are not
simple waiting. And also the opposite: make a place which
can draw a person waiting into a reverie; quiet; a positive
silence"

1/25/05 Doc 1 Introduction slide # 14

Chicken And Egg2

Problem

Two concepts are each a prerequisite of the other

To understand A one must understand B

To understand B one must understand A

A "chicken and egg" situation

Constraints and Forces

First explain A then B

• Everyone would be confused by the end

Simplify each concept to the point of incorrectness to
explain the other one

• People don't like being lied to

Solution

Explain A & B correctly by superficially

Iterate your explanations with more detail in each iteration

2 Anthony 1996

1/25/05 Doc 1 Introduction slide # 15

Benefits of Software Patterns

By providing domain expertise patterns

• Reduce time to find solutions

• Avoid problems from inexpert design decisions

Patterns reduce time to design applications

• Patterns are design chunks larger than objects

Patterns reduce the time needed to understand a design

1/25/05 Doc 1 Introduction slide # 16

Common Forms For Writing Design Patterns

Alexander - Originated pattern literature

GOF (Gang of Four) - Style used in Design Patterns text

Portland Form -Form used in on-line Portland Pattern
Repository

http://c2.com/cgi/wiki?PortlandPatternRepository

Coplien

1/25/05 Doc 1 Introduction slide # 17

Design Principle 1

Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define
common interfaces for a set of classes

Declare variables to be instances of the abstract class not
instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of
objects they use, as long as the objects adhere to the
interface the client expects

Client classes/objects remain unaware of the classes that
implement these objects. Clients only know about the
abstract classes (or interfaces) that define the interface.

1/25/05 Doc 1 Introduction slide # 18

Programming to an Interface
Java Collections
Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

Collection students = new XXX;
students.add(aStudent);

students can be any collection type

We can change our mind on what type to use

1/25/05 Doc 1 Introduction slide # 19

Design Principle 2

Favor object composition over class inheritance

Composition
• Allows behavior changes at run time

• Helps keep classes encapsulated and focused on one
task

• Reduce implementation dependencies

Inheritance

class A {
Foo x
public int complexOperation() { blah }

}

class B extends A {
public void bar() { blah}

}

Composition

class B {
A myA;
public int complexOperation() {

return myA.complexOperation()
}

public void bar() { blah}
}

1/25/05 Doc 1 Introduction slide # 20

Parameterized Types

Generics in Ada, Eiffel, Java (jdk 1.5)
Templates in C++

Allows you to make a type as a parameter to a method or
class

template <class TypeX>
TypeX min(TypeX a, Type b)

{
return a < b ? a : b;
}

Parameterized types give a third way to compose behavior
in an object-oriented system

1/25/05 Doc 1 Introduction slide # 21

Designing for Change

Some common design problems that GoF patterns that
address

• Creating an object by specifying a class explicitly

Abstract factory, Factory Method, Prototype

• Dependence on specific operations

Chain of Responsibility, Command

• Dependence on hardware and software platforms

Abstract factory, Bridge

• Dependence on object representations or
implementations

Abstract factory, Bridge, Memento, Proxy

• Algorithmic dependencies

Builder, Iterator, Strategy, Template Method, Visitor

• Tight Coupling

Abstract factory, Bridge, Chain of Responsibility,
Command, Facade, Mediator, Observer

• Extending functionality by subclassing

Bridge, Chain of Responsibility, Composite,
Decorator, Observer, Strategy

• Inability to alter classes conveniently

Adapter, Decorator, Visitor

1/25/05 Doc 1 Introduction slide # 22

Refactoring

We have code that looks like:

at: anInteger put: anObject
(smallKey ~= largeKey)

ifTrue:
[(anInteger < smallKey)

ifTrue: [self atLeftTree: anInteger put: anObject]
ifFalse: [(smallKey = anInteger)

ifTrue: [smallValue := anObject]
ifFalse: [(anInteger < largeKey)

ifTrue: [self atMiddleTree: anInteger put: anObject]
ifFalse: [(largeKey = anInteger)

ifTrue: [largeValue := anObject]
ifFalse: [(largeKey < anInteger)

ifTrue: [self atRightTree: anInteger put: anObject]]]]]]
ifFalse:

[self addNewKey: anInteger with: anObject].

Now what?

1/25/05 Doc 1 Introduction slide # 23

The Broken Window3

In inner cities some buildings are:

• Beautiful and clean
• Graffiti filled, broken rotting hulks

Clean inhabited buildings can quickly become abandoned
derelicts

The trigger mechanism is:

• A broken window

If one broken window is left unrepaired for a length of time

• Inhabitants get a sense of abandonment
• More windows break
• Graffiti appears
• Pipes break
• The damage goes beyond the owner's desire to fix

Don't live with Broken Widows in your code

3 Pragmatic Programmer, pp. 4-5

1/25/05 Doc 1 Introduction slide # 24

The Perfect Lawn

A visitor to an Irish castle asked the groundskeeper the
secret of the beautiful lawn at the castle

The answer was:

• Just mow the lawn every third day for a hundred years

Spending a little time frequently

• Is much less work that big concentrated efforts
• Produces better results in the long run

So frequently spend time cleaning your code

1/25/05 Doc 1 Introduction slide # 25

Familiarity verse Comfort

Why don't more programmers/companies continually:

• Write unit tests
• Refactor
• Work on improving programming skills

Familiarity is always more powerful than comfort.

-- Virginia Satir

1/25/05 Doc 1 Introduction slide # 26

Refactoring

Refactoring is the modifying existing code without adding
functionality

Changing existing code is dangerous

• Changes can break existing code

To avoid breaking code while refactoring:

• Need tests for the code
• Proceed in small steps

1/25/05 Doc 1 Introduction slide # 27

Sample Refactoring: Extract Method4

You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the
purpose of the method

Motivation

Short methods:

• Increase possible reuse
• Makes high level methods easier to read
• Makes easier to override methods

4 Refactoring Text, pp. 110-116

1/25/05 Doc 1 Introduction slide # 28

Mechanics

• Create a new method - the target method

Name the target method after the intention of the method

With short code only extract if the new method name is
better than the code at revealing the code's intention

• Copy the extracted code from the source method into the
target method

• Scan extracted code for references to local variables
(temporary variables or parameters) of the source method

• If a temporary variable is used only in the extracted code
declare it local in the target method

• If a parameter of the source method is used in the
extracted code, pass the parameter to the target method

1/25/05 Doc 1 Introduction slide # 29

Mechanics - Continued

• See if the extracted code modifies any of the local
variables of the source method

If only one variable is modified, then try to return the
modified value

If more than one variable is modified, then the extracted
code must be modified before it can be extracted

Split Temporary Variables or Replace Temp with Query
may help

• Compile when you have dealt with all the local variables

• Replace the extracted code in source code with a call to
the target method

• Compile and test

1/25/05 Doc 1 Introduction slide # 30

Example5

No Local Variables

Note I will use Fowler's convention of starting instance
variables with "_".

printOwing
| outstanding |

outstanding := 0.0.
Transcript

show: '********************';
cr;
show: '***Customer Owes***';
cr;
show: '********************';
cr.

outstanding := _orders inject: 0 into: [:sum :each | sum + each].

Transcript
show: 'Name: ';
show: _name;
cr;
show: 'Amount: ';
show: outstanding;
cr.

5 Example code is Squeak version of Fowler's Java example

1/25/05 Doc 1 Introduction slide # 31

Extracting the banner code we get:

printOwing
| outstanding |

outstanding := 0.0.
self printBanner.

outstanding := _orders inject: 0 into: [:sum :each | sum + each].

Transcript
show: 'Name: ';
show: _name;
cr;
show: 'Amount: ';
show: outstanding;
cr.

printBanner
Transcript

show: '********************';
cr;
show: '***Customer Owes***';
cr;
show: '********************';
cr

1/25/05 Doc 1 Introduction slide # 32

Examples: Using Local Variables

We can extract printDetails: to get

printOwing
| outstanding |
self printBanner.
outstanding := _orders inject: 0 into: [:sum :each | sum + each].
self printDetails: outstanding

printDetails: aNumber
Transcript

show: 'Name: ';
show: _name;
cr;
show: 'Amount: ';
show: aNumber;
cr.

Then we can extract outstanding to get:

printOwing
self

printBanner;
printDetails: (self outstanding)

outstanding
^_orders inject: 0 into: [:sum :each | sum + each]

The text stops here, but the code could use more work

1/25/05 Doc 1 Introduction slide # 33

Using Add Parameter (275)

printBanner
Transcript

show: '********************';
cr;
show: '***Customer Owes***';
cr;
show: '********************';
cr

becomes:

printBannerOn: aStream
aStream

show: '********************';
cr;
show: '***Customer Owes***';
cr;
show: '********************';
cr

Similarly we do printDetails and printOwing

printOwingOn: aStream
self printBannerOn: aStream.
self

printDetails: (self outstanding)
on: aStream

Perhaps this should be called
Replace Constant with Parameter

