5/3/05 Doc 18 Pipe Filters and Broker slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2005
Doc 18 Pipe Filters and Broker

Contents

Architectural Patterns. ... 2
Pipes & FIlters. ..., 3
The BroKer Pattern.........oooooeee e 16
1D) F=T 0] o= 7P 18
VA AN S . .o 20
KKNOWN USES.. e aeaanns 22
CONSEUUENCES......uiiieiieei e e 23
SOME RMI. .o 26
The Remote Interface. ... 26
The Server Implementation............c.c.oooii i, 27
The CHeNt COde.... ..o, 30
Running The Example..........coooiiii e, 31
SEIVEE SIAC. .., 31

(01 11=T 0] SRS Lo [YRR 33
(0) ([T 34

Reference

Pattern-Oriented Software Architecture, Buschmann et al.,
1996, Wiley, pp 53-70, 99-122

Copyright ©, All rights reserved. 2005 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

5/3/05 Doc 18 Pipe Filters and Broker slide # 2
Architectural Patterns
Deal with basic structure of an application

Specify subsections of an application

Observer verses MVC
Observer indicates how to solve a problem in your code

MVC specifies components of a GUI application

5/3/05 Doc 18 Pipe Filters and Broker slide # 3

Pipes & Filters
Unix Example
Is | grep -ib | wc -
Context

Processing data streams

Problem

Building a system that processes or transforms a stream of data

Forces

* Small processing steps are easier to reuse than large
components

* Non-adjacent processing steps do not share information

* System changes should be possible by exchanging or
recombining processing steps, even by users

* Final results should be presented or stored in different ways

5/3/05 Doc 18 Pipe Filters and Broker slide # 4

Solution

Divide task into multiple sequential processing steps or filter
components

Output of one filter is the input of the next filter
Filters process data incrementally

* Filter does not wait to get all the data before processing

Data source — input to the system
Data sink — output of the system
Pipes - connect the data source, filters and data sink

Pipe implements the data flow between adjacent processes
steps

Processing pipeline — sequence of filters and pipes

Pipeline can process batches of data

5/3/05 Doc 18 Pipe Filters and Broker slide # 5

Structure

Data . [FEilter | . [Filter | . Data
Source Pipe L et) Pipe | e) Pipe Sink

A Filter can be triggered by:

* Subsequent pipeline element pulls output from the filter
* Previous pipeline element pushes new data into filter

* Active Filter — pulls data from input and pushes data down the
pipeline

If two active filters are adjacent the pipe between them
synchronizes them

5/3/05 Doc 18 Pipe Filters and Broker slide # 6

Some Implementation issues
Dividing the system into separate tasks
Data format passed between filters

This may require filters to convert from common format to a
usable format

Implementing the pipes
Filter could directly push/pull data from another filter
Using a separate pipe mechanism
* More flexible

* Makes it easier to test filters
* Permits active filters

5/3/05 Doc 18 Pipe Filters and Broker slide # 7
Error handling

What happens if 1/2 data is processed when one filter has a
runtime exception?

How does one inform the other filters?

Can one restart the pipeline to process the next batch of data?

5/3/05 Doc 18 Pipe Filters and Broker slide # 8

Simple Java Example

SharedQueue for Java Pipe

import java.util.ArrayList;
public class SharedQueue

{

ArrayList elements = new ArrayList();

public synchronized void append(Object item)
{
elements.add(item);
notify();

}

public synchronized Object get()

{
try
{

while (elements.isEmpty())
wait();

}

catch (InterruptedException threadlsDone)

{

return null;

}

return elements.remove(0);

}

public int size()

{

return elements.size();

}
}

5/3/05 Doc 18 Pipe Filters and Broker slide # 9

public class Source extends Thread
{
private static final char END_OF PIPELINE ='@";
String in;
SharedQueue out;

public Source(String input, SharedQueue output)
{
in = input;
out = output;

}

public void run()
1£or (int k = 0; k < in.length(); k++)
f)ut.append(new Character(in.charAt(k)));
} }
}

5/3/05 Doc 18 Pipe Filters and Broker slide # 10

public class UpperCasekFilter extends Thread
{
private static final char END_OF PIPELINE ='@";
SharedQueue in;
SharedQueue out;

public UpperCaseFilter(SharedQueue input, SharedQueue output)
{
in = input;
out = output;

}

public void run()

{

Character currentObject = (Character) in.get();

char current = currentObject.charValue();

while (current != END OF PIPELINE)
{
out.append(new Character(Character.toUpperCase(current)));
currentObject = (Character) in.get();
current = currentObject.charValue();

}
}
}

5/3/05 Doc 18 Pipe Filters and Broker slide # 11

public class Display extends Thread
{
private static final char END_OF PIPELINE ='@";
SharedQueue in;
SharedQueue out;

public Display(SharedQueue input, SharedQueue output)
{
in = input;
out = output;

}

public void run()
{
Character currentObject = (Character) in.get();
char current = currentObject.charValue();
while (current != END OF PIPELINE)
{
System.out.printin(current);
currentObject = (Character) in.get();
current = currentObject.charValue();

}
}
}

5/3/05 Doc 18 Pipe Filters and Broker slide # 12

Running the Example
public class Example
{
public static void main(String[] args) throws IOException,
NoSuchAlgorithmException

{
SharedQueue first = new SharedQueue();
SharedQueue second = new SharedQueue();
Source start = new Source("cat man@", first);
UpperCasekFilter filter = new UpperCaseFilter(first, second);
Display end = new Display(second, null);
start.start();
filter.start();
end.start();

}

5/3/05 Doc 18 Pipe Filters and Broker slide # 13

Smalltalk Version
endOfPipeline := $@.

upperCaseFilter :=
[:input :output |
| nextCharacter |

[nextCharacter := input next.
nextCharacter ~= endOfPipeline]
whileTrue: [output nextPut: nextCharacter asUppercase]].

noBeesFilter :=
[:input :output |
| nextCharacter |

[nextCharacter := input next.
nextCharacter ~= endOfPipeline]
whileTrue:
[nextCharacter ~= $B
ifTrue: [output nextPut: nextCharacter]]].

display :=
[:input |
| nextCharacter |

[nextCharacter := input next.
nextCharacter ~= endOfPipeline]
whileTrue: [Transcript nextPut: nextCharacter; flush]].

5/3/05 Doc 18 Pipe Filters and Broker slide # 14

Running Example

dataStream :='Hi Mom. How is Bob@' readStream.
pipeA = SharedQueue new.
pipeB := SharedQueue new.

[upperCaseFilter value: dataStream value: pipeA] fork.
[noBeeskFilter value: pipeA value: pipeB] fork.
[display value: pipeB] fork.

5/3/05 Doc 18 Pipe Filters and Broker slide # 15

But this example not an Application!

How does it differ from using Streams?

5/3/05 Doc 18 Pipe Filters and Broker slide # 16
The Broker Pattern
transfers transfers
message message
Client-side L Broker l Server-side
Proxy updateRepository() Proxy
packData() registerService() packData()
unpackData() acknowledgement() unpackData)
sednResuest() findServer() callService()
return() findClient() sendResponse()
forwardRequest() ’ I
forwardResponse() cafls
uses
calls API calls uses
Client Pl
callServer() _ Server
startTask() Bridge initialize()
useBrokerAPI packData() registerService()
unpackData() runService()
forwardMessage() useBrokerAPI
transmitMessage()

5/3/05 Doc 18 Pipe Filters and Broker slide # 17

A broker
* Handles the transmission of requests from clients to servers
* Handles the transmission of responses from servers to clients
* Must have some means to identify and locate server

* If server is hosted by different broker, forwards the request to
other broker

* If server is inactive, active the server

* Provides APIs for registering servers and invoking server
methods

Bridge

* Optional components used for hiding implementation details
when two brokers interoperate

5/3/05

Doc 18 Pipe Filters and Broker slide # 18

Dynamics

Registering Server

start()

Server Broker
I [
< initialize()
registerService() updateRegistry()
!
acknowledgement()

- l

enterMainLoop()

<<

5/3/05

Doc 18 Pipe Filters and Broker slide # 19

Client Server Interaction

possible proceSs boundary

- Client-side Server-side
Client Proxy Broker ||| ™ proxy Server
callServer() :
<« packData() |
d | [ed |
sReeraueSt() B - findServer()
forward < | > [unpackData()
Request|() caIISeryice() < -
| runService()
forward
.<Response() | backDatal()
< retun <l !
< findClient()
~ unpack !
result Data() :
I

5/3/05 Doc 18 Pipe Filters and Broker slide # 20

Variants

Direct Communication Broker System
* Broker gives the client a communication channel to the server
* Client and server interact directly

* Many CORBA implementation use this variant

Message Passing Broker System

* Clients and servers pass messages rather than services

(methods)

Trader System

* Clients request a service, not a server
* Broker forwards the request to a server that provides the

service

Adapter Broker System

* Hide the interface of the broker component to the servers
using an additional layer

* The adapter layer is responsible for registering servers and
interacting with servers

* For example if all server objects are on the same machine as
application a special adapter could link the objects to the
application directly

5/3/05 Doc 18 Pipe Filters and Broker slide # 21

Callback Broker System
* Eliminate the difference between clients and servers

* When an event is registered with a broker, it calls the
component that is registered to handle the event

Client Clls:\;;(s;de Broker | Serl:\’lfc)r)-;lde Server
callServer() :
< _
- L_alckData() findEvent
gg(‘i o - Handler()
B
I
Event() forward - . - _unpackData()
Request callHandle() < -
1
Event() forward handleEvent()
Response
Event|()
-t ' packData()
callHandle()] !
handle - find
Event() <« Event
- unpack Handler()
Data() |

possible proceSs boundary

5/3/05

CORBA

IBM's SOM/DSOM
Mircosoft OLE 2.x
RMI

Doc 18 Pipe Filters and Broker slide # 22

Known Uses

5/3/05 Doc 18 Pipe Filters and Broker slide # 23

Consequences
Benefits
Location Transparency

Clients (servers) do not care where servers (clients)are located

Changeability and extensibility of components

Changes to server implementations are transparent to clients if
they don't change interfaces

Changes to internal broker implementation does not affect
clients and servers

One can change communication mechanisms without changing
client and server code
Portability of Broker System

Porting client & servers to a new system usually just requires
recompiling the code

5/3/05 Doc 18 Pipe Filters and Broker slide # 24

Benefits - Continued

Interoperability between different Broker System
Different broker systems may interoperate if they have a
common protocol for the exchange of messages
DCOM and CORBA interoperate
DCOM and RMI interoperate
RMI and CORBA interoperate

Reusability

In building new clients you can reuse existing services

5/3/05 Doc 18 Pipe Filters and Broker slide # 25
Liabilities
Restricted Efficiency

Lower fault tolerance compared to non-distributed software

Benefits and Liabilities

Testing and Debugging

A client application using tested services is easier to test than
creating the software from scratch

Debugging a Broker system can be difficult

5/3/05 Doc 18 Pipe Filters and Broker slide # 26

Some RMI
A First Program - Hello World
Modified from "Getting Started Using RMI"

The Remote Interface

public interface Hello extends java.rmi.Remote

{

String sayHello() throws java.rmi.RemoteException;

}

5/3/05 Doc 18 Pipe Filters and Broker slide # 27

The Server Implementation

// Required for Remote Implementation
import java.rmi.”;
import java.rmi.server.UnicastRemoteObiject;

I/l Used in method getUnixHostName
import java.io.BufferedReader;
import java.io.lOException;

import java.io.InputStreamReader;

public class HelloServer
extends UnicastRemoteObject
implements Hello

{

public HelloServer() throws RemoteException

{
}

// The actual remote sayHello
public String sayHello() throws RemoteException

{

return "Hello World from " + getUnixHostName();

}

5/3/05 Doc 18 Pipe Filters and Broker slide # 28

I/l Works only on UNIX machines

protected String getUnixHostName()

{

try
{
Process hostName;
BufferedReader answer;

hostName = Runtime.getRuntime().exec("hostname");
answer = new BufferedReader(
new InputStreamReader(
hostName.getlnputStream()));

hostName.waitFor();
return answer.readLine().trim();

}

catch (Exception noName)

{

return "Nameless";

}
}

5/3/05 Doc 18 Pipe Filters and Broker slide # 29

I/l Main that registers with Server with Registry

public static void main(String args[])
{
/I Create and install a security manager
System.setSecurityManager(new RMISecurityManager());

try
{

HelloServer serverObject = new HelloServer ();

Naming.rebind("//roswell.sdsu.edu/HelloServer",
serverObject);

System.out.printin("HelloServer bound in registry");

}

catch (Exception error)
{
System.out.printin("HelloServer err: ");
error.printStackTrace();

}
}
}

5/3/05 Doc 18 Pipe Filters and Broker slide # 30

The Client Code

import java.rmi.”;
import java.net.MalformedURLEXxception;

public class HelloClient

{
public static void main(String argsl])
{
try {
Hello remote = (Hello) Naming.lookup(
"/Iroswell.sdsu.edu/HelloServer");
String message = remote.sayHello();
System.out.printin(message);
}
catch (Exception error)
{
error.printStackTrace();
}
}
}

Note the multiple catches are to illustrate which exceptions are
thrown

5/3/05 Doc 18 Pipe Filters and Broker slide # 31

Running The Example
Server Side

Step 1. Compile the source code
Server side needs interface Hello and class HelloServer

javac Hello.java HelloServer.java

Step 2. Generate Stubs and Skeletons (to be explained later)
The rmi compiler generates the stubs and skeletons

rmic HelloServer
This produces the files:

HelloServer Skel.class
HelloServer_Stub.class

The Stub is used by the client and server
The Skel is used by the server
The normal command is:

rmic fullClassname

5/3/05 Doc 18 Pipe Filters and Broker slide # 32
Step 3. Insure that the RMI Registry is running
For the default port number
rmiregistry &
For a specific port number
rmiregistry portNumber &

On a UNIX machine the rmiregistry will run in the background
and will continue to run after you log out

This means you manually kill the rmiregistry

Step 4. Register the server object with the rmiregistry by
running HelloServer.main()

java HelloServer &

5/3/05 Doc 18 Pipe Filters and Broker slide # 33

Client Side

The client can be run on the same machine or a different
machine than the server

Step 1. Compile the source code
Client side needs interface Hello and class HelloClient
javac Hello.java HelloClient.java
Step 2. Make the HelloServer_Stub.class is available
Either copy the file from the server machine
or
Compile HelloServer.java on client machine and rum rmic
Step 3. Run the client code

java HelloClient

5/3/05

Doc 18 Pipe Filters and Broker slide # 34

Proxies

How do HelloClient and HelloSever communicate?

Machine A

HelloClient

Machine B

HelloServer

Client talks to a Stub that relays the request to the server over a

network

Server responds via a skeleton that relays the response to the

Client

Machine A

HelloClient

SayHello

Stub

Hello

SayHello

Machine B

Hello

HelloServer
SayHello
—>

Skeletons

