
February 17, 2005 Doc 9, Threads part 1 slide # 1

CS 580 Client-Server Programming
Spring Semester, 2004
Doc 9 Threads part 1

Contents
Concurrent Programming...3
Threads - Light Weight Processes...4

Creating Threads...5
Multiple Processors ...10
Thread Scheduling...11

Priorities ..12
Time-slicing ...16

Java Types of Threads: use and daemon18
Thread Control...20

Thread States..20
Yield ..21
Killing a Thread ...23

Copyright ©, All rights reserved. 2005 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

February 17, 2005 Doc 9, Threads part 1 slide # 2

References

The Java Programming Language, 2nd Ed. Arnold & Gosling, Addison-Wesley, 1998

The Java Language Specification, Gosling, Joy, Steele, Addison-Wesley, 1996, Chapter 17
Threads and Locks.

Java 1.4.1 on-line documentation http://java.sun.com/j2se/1.4/docs/api/overview-
summary.html

Reading

Java Network Programming, 3nd Ed., Harold, Chapter 5. (Java)

February 17, 2005 Doc 9, Threads part 1 slide # 3

Concurrent Programming

The ability to perform concurrent programming is part of the Java programming language.
That is different parts of the same program can be executing at the same time, or behave if
they are executing at the same time. Java uses threads to achieve concurrency. Writing
concurrent programs presents a number of issues that do not occur in writing sequential
code.

Safety

Two different threads could write to the same memory
location at the same time, leaving the memory location in
an improper state.

Liveness

Threads can become deadlocked, each thread waiting
forever for the other to perform a task. Threads can
become livelocked, waiting forever to get their turn to
execute.

Nondeterminism

Thread activities can become intertwined. Different
executions of a program with the same input can produce
different results. This can make program hard to debug.

Communication

Different threads in the same program execute
autonomously from each other. Communication between
threads is an issue.

February 17, 2005 Doc 9, Threads part 1 slide # 4

Threads - Light Weight Processes

A thread is an active entity that shares the same name space as the program that created the
thread. This means that two threads in a program can access the same data.

Difference from Processes (fork())

Processes (Heavy Weight)
• Child process gets a copy of parent’s variables
• Relatively expensive to start
• Don't have to worry about concurrent access to variables

Thread (Light Weight Process)
• Child process shares parents variables
• Relatively cheap to start
• Concurrent access to variables is an issue

February 17, 2005 Doc 9, Threads part 1 slide # 5

Creating Threads
Java

There are two different methods for creating a thread: extending the Thread class or
implementing the Runnable interface. The first method is shown on this slide, the second on
the next slide.

In the Thread subclass, implement the run() method. The signature of run() must be as it is
in this example. run() is the entry point or starting point (or main) of your thread. To start a
thread, create an object from your Thread class. Send the "start()" method to the thread
object. This will create the new thread, start it as an active entity in your program, and call the
run() method in the thread object. Do not call the run() method directly. Calling the run()
directly executes the method in the normal sequential manner.

class ExtendingThreadExample extends Thread {
public void run() {

for (int count = 0; count < 4; count++)
System.out.println("Message " + count +

 " From: Mom");
}

public static void main(String[] args) {

ExtendingThreadExample parallel =
new ExtendingThreadExample();

System.out.println("Create the thread");
parallel.start();
System.out.println("Started the thread");
System.out.println("End");

}
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 2 From: Mom
Message 3 From: Mom
Started the thread
End

February 17, 2005 Doc 9, Threads part 1 slide # 6

Second Method for Creating a Thread

First, have your class implement the Runnable interface, which has one method, run(). This
run() plays the same role as the run() in the Thread subclass in the first method. Second,
create an instance of the Thread class, passing an instance of your class to the constructor.
Finally, send the thread object the start() method.

class SecondMethod implements Runnable {
public void run() {

for (int count = 0; count < 4; count++)
System.out.println("Message " + count + " From: Dad");

}

public static void main(String[] args) {
SecondMethod notAThread = new SecondMethod();
Thread parallel = new Thread(notAThread);

System.out.println("Create the thread");
parallel.start();
System.out.println("Started the thread");
System.out.println("End");

}
}

Output
Create the thread
Message 0 From: Dad
Message 1 From: Dad
Message 2 From: Dad
Message 3 From: Dad
Started the thread
End

February 17, 2005 Doc 9, Threads part 1 slide # 7

Giving a Thread a Name
We can give each thread a string id, which can be useful.

public class WithNames implements Runnable {
public void run() {

for (int count = 0; count < 2; count++)
System.out.println("Message " + count + " From: " +

Thread.currentThread().getName());
}

public static void main(String[] args) {
Thread a = new Thread(new WithNames(), "Mom");
Thread b = new Thread(new WithNames(), "Dad");

System.out.println("Create the thread");
a.start();
b.start();
System.out.println("End");

}
}

Output
Create the thread
Message 0 From: Mom
Message 1 From: Mom
Message 0 From: Dad
Message 1 From: Dad
End

February 17, 2005 Doc 9, Threads part 1 slide # 8

SimpleThread for Use in Future Examples

This class will be used in future examples.

public class SimpleThread extends Thread
{
private int maxCount = 32;

public SimpleThread(String name)
{
super(name);
}

public SimpleThread(String name, int repetitions)
{
super(name);
maxCount = repetitions;
}

public SimpleThread(int repetitions)
{
maxCount = repetitions;
}

public void run()
{
for (int count = 0; count < maxCount; count++)

{
System.out.println(count + " From: " + getName());
}

}
}

February 17, 2005 Doc 9, Threads part 1 slide # 9

Show Some Parallelism
In this example we show some actual parallelism. Note that the output from the different
threads is mixed.

public class RunSimpleThread
{
public static void main(String[] args)

{
SimpleThread first = new SimpleThread(5);
SimpleThread second = new SimpleThread(5);
first.start();
second.start();
System.out.println("End");
}

}
Output- On Rohan

End
0 From: Thread-0
1 From: Thread-0
2 From: Thread-0
0 From: Thread-1
1 From: Thread-1
2 From: Thread-1
3 From: Thread-0
3 From: Thread-1
4 From: Thread-0
4 From: Thread-1

February 17, 2005 Doc 9, Threads part 1 slide # 10

Multiple Processors
Java

Java on a Solaris machine with multiple processors can run
threads on different processors

If you run the last example on a single processor machine the
results may be completely different.

February 17, 2005 Doc 9, Threads part 1 slide # 11

 Thread Scheduling

• Priorities

• Timeslicing

February 17, 2005 Doc 9, Threads part 1 slide # 12

Priorities

Each thread has a priority

If there are two or more active threads

• If one has higher priority than others
• The higher priority thread is run until it is done or not active

Java Priorities
java.lang.Thread field Value
Thread.MAX_PRIORITY 10
Thread.NORM_PRIORITY 5
Thread.MIN_PRIORITY 1

February 17, 2005 Doc 9, Threads part 1 slide # 13

Setting Priorities

Continuously running parts of the program should have lower-
priority than rare events

User input should have very high priority

A thread that continually updates some data is often set to run
at MIN_PRIORITY

February 17, 2005 Doc 9, Threads part 1 slide # 14

Java Examples

public class PriorityExample
{
public static void main(String[] args)

{
SimpleThread first = new SimpleThread(5);
SimpleThread second = new SimpleThread(5);
second.setPriority(8);
first.start();
second.start();
System.out.println("End");
}

}

Output
On Single Processor On Multiple Processor Rohan
0 From: Thread-5 End
1 From: Thread-5 0 From: Thread-3
2 From: Thread-5 1 From: Thread-3
3 From: Thread-5 2 From: Thread-3
4 From: Thread-5 0 From: Thread-2
0 From: Thread-4 3 From: Thread-3
1 From: Thread-4 1 From: Thread-2
2 From: Thread-4 2 From: Thread-2
3 From: Thread-4 4 From: Thread-3
4 From: Thread-4 3 From: Thread-2
End 4 From: Thread-2

February 17, 2005 Doc 9, Threads part 1 slide # 15

Threads Run Once

When a Java or Smalltalk thread ends it cannot be restarted

public class RunOnceExample extends Thread {
public void run() {

System.out.println("I ran");
}

public static void main(String args[]) throws Exception {
RunOnceExample onceOnly = new RunOnceExample();
onceOnly.setPriority(6);
onceOnly.start();

System.out.println("Try restart");
onceOnly.start();

System.out.println("The End");
}

}

Output
I ran
Try restart
The End

February 17, 2005 Doc 9, Threads part 1 slide # 16

Thread Scheduling
Time-slicing

Time-slicing
• A thread is run for a short time slice and suspended,
• It resumes only when it gets its next "turn"

• Threads of the same priority share turns

Non time-sliced threads run until:
• They end
• They are terminated
• They are interrupted
• Higher priority threads interrupts lower priority threads

• They go to sleep
• They block on some call
• Reading a socket
• Waiting for another thread

• They yield

Java

Does not specify if threads are time-sliced or not

Implementations are free to decide

February 17, 2005 Doc 9, Threads part 1 slide # 17

Testing for Time-slicing & Parallelism

public class InfinityThread extends Thread
{
public void run()

{
while (true)

System.out.println("From: " + getName());
}

public static void main(String[] args)
{
InfinityThread first = new InfinityThread();
InfinityThread second = new InfinityThread();
first.start();
second.start();
}

}

Output if Time-sliced

A group of "From: Thread-a" will be followed by a group of
"From: Thread-b" etc.

Output if not Time-sliced, Single Processor

"From: Thread-a" will repeat "forever"

Multiple Processor
"From: Thread-a" and "From: Thread-b" will intermix "forever"

February 17, 2005 Doc 9, Threads part 1 slide # 18

 Java Types of Threads: use and daemon

We have seen several examples now of a program that continues to execute after its main
has finished. So, when does a Java program end? To answer this question we need to know
about the different types of threads. There are two types of threads: user and daemon.

Daemon thread

Daemon threads are expendable. When all user threads
are done, the program ends all daemon threads are
stopped

User thread

User threads are not expendable. They continue to
execute until their run method ends or an exception
propagates beyond the run method.

When a thread is created, it is the same type of thread as its creator thread. The type a thread
can be changed before its start() method is called, but not after its start() method has been
called. See example on next slide. The main of your program is started in a user thread.

The Java Virtual Machine continues to execute the program
until either of the following occurs:

• The exit method of class Runtime has been called and the
security manager has permitted the exit operation to take
place.

• All threads that are not daemon threads have died, either by
returning from the call to the run method or by throwing an
exception that propagates beyond the run method.

February 17, 2005 Doc 9, Threads part 1 slide # 19

Daemon example

The thread "shortLived" has the same priority as the thread running main. Hence on a single
processor machine, "shortLived" will not start until main ends or main uses up its time-slice.
Main is short enough to finish in one time-slice. However, since "shortLived" is a daemon
thread, it does not run after all the user threads are done. Hence, "shortLived" never starts
and does not print anything.

public class DaemonExample extends Thread
{
public static void main(String args[])

{
DaemonExample shortLived = new DaemonExample();
shortLived.setDaemon(true);
shortLived.start();
System.out.println("Bye");
}

public void run()
{
while (true)

{
System.out.println("From: " + getName());
System.out.flush();
}

}
}

Output
From: Thread-0 (Repeated many times)
Bye
From: Thread-0 (Repeated some more, then the program ends)

February 17, 2005 Doc 9, Threads part 1 slide # 20

Thread Control
Thread States

• Executing

• Only one thread per processor can be running at a time

• Runnable

• A thread is ready to run but is not currently running

• Not Runnable

• A thread that is suspended or waiting for a resource

February 17, 2005 Doc 9, Threads part 1 slide # 21

Yield

Allow another thread of the same priority to run

public class YieldThread extends Thread {
public void run() {

for (int count = 0; count < 4; count++) {
System.out.println(count + " From: " + getName());
yield();

}
}

public static void main(String[] args) {

YieldThread first = new YieldThread();
YieldThread second = new YieldThread();

 first.setPriority(1);
 second.setPriority(1);

first.start();
second.start();
System.out.println("End");

}
}

Output (Explain this)
0 From: Thread-0
0 From: Thread-1
1 From: Thread-0
1 From: Thread-1
2 From: Thread-0
2 From: Thread-1
3 From: Thread-0
End
3 From: Thread-1

February 17, 2005 Doc 9, Threads part 1 slide # 22

Suspend & Resume – Java

The following Thread methods are not thread safe

• suspend
• resume
• stop

These methods can leave your Java program in unstable states

You should not use them

February 17, 2005 Doc 9, Threads part 1 slide # 23

Killing a Thread
Killing a Thread - Java

stop
This Thread method is unsafe do not use it

destroy
This method does nothing. It was never implemented

There is no good way to really kill a Java thread

Later lectures will cover some suggestions for doing this

