
CS 580 Client-Server Programming
Spring Semester, 2005

Comments on Assignment 7
Contents

...................Inheritance Versus Composition! 2
..................................Common Mistakes ! 4

...............................Roles Verses Classes ! 6
....Separate Accepting from Process Requests ! 8

......Extreme Programming (XP) & Planning ! 9
............Don't Hide Fields between Methods ! 10

......................................Thread Priorities ! 11
............................Don't Hide logic of Code ! 12

................................Naming Conventions ! 14
...........................Fields Verses Arguments ! 15

..............Keep Separate Concerns Separate ! 16
Methods should do one (conceptual) thing!16

Replace case statements with Polymorphism!19

Copyright ©, All rights reserved. 2005 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent
(http://www.opencontent.org/opl.shtml) license defines the copyright on this
document.

4/26/05� Doc Comments on Assignment 7 slide# 1

Inheritance Versus Composition

public class MessageReader extends UpToInputStream {

Verses

public class MessageReader {
 UpToInputStream in;

 public MessageReader(InputStream input) {
 in = new UpToInputStream(input);
 }

4/26/05� Doc Comments on Assignment 7 slide# 2

Inheritance

What should I use as a super class?

A has a B

Indicates that an instance variable of A is an instance of B

A is a B
A is a type of B

Indicates that A is a subclass of B

A car has an engine, so car object contains an engine object

A BinarySearchTree has nodes, so it has instance variables left
and right

4/26/05� Doc Comments on Assignment 7 slide# 3

Common Mistakes
Engine Subclass of Car

Car

Engine

Using a has-a relation for inheritance

• A car has-an engine
• An engine is not a type of car

4/26/05� Doc Comments on Assignment 7 slide# 4

Car subclass of Engine

Car

Engine

“I need access to engine methods in the car class and now I
have it.”

4/26/05� Doc Comments on Assignment 7 slide# 5

Roles Verses Classes

2.11 Be sure the abstractions you model are classes and not
simply the roles objects play

Node

LeftNode RightNode

public class BinarySearchTree {
 LeftNode left;
 RightNode right;

Verses

Node

public class BinarySearchTree {
 Node left;
 Node right;

4/26/05� Doc Comments on Assignment 7 slide# 6

More Roles

Person

Mother Father Child

Mother mother = new Mother();
Father father = new Father();
etc.

Person

Person mother = new Person();
Person father = new Person();
etc.

4/26/05� Doc Comments on Assignment 7 slide# 7

Separate Accepting from Process Requests

while (listening) {
 connection = serverSocket.accept();
 out = new MessageWriter(blah);
 in = new MessageReader(blah);
 Message fromClient = in.readMessage();
 if (!fromClient.isHandShake()) {
 code to end connection
 }
 else {
 code to process handShake;
 while (!(fromClient = in.readMessage()).isEndConnection()) {
 lots more code

How do you test the above?
How do you introduce threads?

while (listening) {
 connection = serverSocket.accept();
 ClientHandler client = new ClientHandler(connection);
 client.start();
}

4/26/05� Doc Comments on Assignment 7 slide# 8

Extreme Programming (XP) & Planning

It is hard to know how to design new things

XP tells us to design and code for what we need now

The Simplest Possible Design

The right design at any given time is the one that

• Runs all the tests
• Has no duplicate logic
• State every intention important to the programmers
• Has the fewest possible classes and methods

This works if you:

• Write tests (first)
• Refactor your code as you add new functionality

4/26/05� Doc Comments on Assignment 7 slide# 9

Don't Hide Fields between Methods

A class can span many pages

Don't make your reader search pages to find field declarations

Place all fields either
• Before all methods
• After all methods

public class Foo {
 int firstField;
 public void bar() {
 blah:
 }
 int secondField:
! public void run() {
! ! blah;
 }
 float thirdField;
 etc.
}

4/26/05� Doc Comments on Assignment 7 slide# 10

Thread Priorities

Thread handling network code should have high priority

Code handling normal actives should be lower priority

Thread handling accept should have higher priority than that
handling client connections

4/26/05� Doc Comments on Assignment 7 slide# 11

Don't Hide logic of Code
Keep code in a method at same level

public class Server {
 public void run() {
 while (isRunning) {
 client = socket.accept();
 client.setReceiveBufferSize (blah);
 client.setSoTimeout(balh);
 in = new TorrentReader(client.getInputStream());
 out = new TorrentWriter(client.getOutputStream());
 getHandshake();
 }
 }

private void getHandshake() {
 Message fromClient = in.readMessage();
 if (!fromClient.isHandshake()) {
 blah
 blah
 blah
 }
 else {
 Message toClient = new Handshake();
 out.write(toClient);
 service();
 }

4/26/05� Doc Comments on Assignment 7 slide# 12

private void service() {
 now handled the clients request.

}

Some attempt to show logic

public class Server {
 public void run() {
 while (isRunning) {
 client = socket.accept();
 setNetworkParameters(client);
 setClientIOStreams(client);
 if (handshakeIsSuccessful())
 serviceClientRequest();
 }
 }

4/26/05� Doc Comments on Assignment 7 slide# 13

Naming Conventions

inReader.getMessage();

getXXX() returns a value
What is going on above?

Class Names

Classes are things - names normally are nouns

Subclasses names use adjectives to refine name

List Component InputStream

AbstractList Button FilterInputStream

ArrayList

Verbs normally indicate actions or methods

public class CreateMetaData { }

4/26/05� Doc Comments on Assignment 7 slide# 14

Fields Verses Arguments

public class Server {
 private ServerSocket serverSocket;
 private Socket client;

 public void run() {
 client = serverSocket.accept();
 byte[] message = readMessage();
 blah
 }

private byte[] readMessage() {
 UpToFilterInputStream input =
 new UpToFilterInputStream(
 new BufferedInputStream(
 client.getInputStream()));
 byte [] readBytes = input.readUpTo();
 return readBytes;
}

Using client as a field
• Makes the code harder to understand
• Does not allow multiple connections

4/26/05� Doc Comments on Assignment 7 slide# 15

Keep Separate Concerns Separate
Methods should do one (conceptual) thing

public void run(int port) {
 Handler textLog = new FileHandler("logfile.txt", true);
 textLog.setFormatter(new SimpleFormatter());
 textLog.setLevel(Level.All);
 log.addHandler(textLog);

 server = new ServerSocket(port);
 log.info(blah);
 while (true) {
 Socket client = server.accept();
 blah;

4/26/05� Doc Comments on Assignment 7 slide# 16

public class Server {

 private static Logger log;

 static {
 Handler textLog = new FileHandler("logfile.txt", true);
 textLog.setFormatter(new SimpleFormatter());
 textLog.setLevel(Level.All);
 log = Logger.getLogger("Server");
 log.addHandler(textLog);
 }

public Server(int port) {
 this.port = port;
}

public void run() {
 server = new ServerSocket(port);
 log.info(blah);
 while (true) {
 Socket client = server.accept();
 blah;

4/26/05� Doc Comments on Assignment 7 slide# 17

Keep Separate Concerns Separate

Servers do many different type of things

Log
Accept client connections
Handle multiple clients
Read messages
Parse messages
Send messages
Handle threads
Save & retrieve data

Keep separate things separate

public class TorrentData {
 public MetaData getFile(String id) { blah; }

 public byte[] getPiece(String fileId, int pieceIndex) { }

 public void setPiece(String fileId, int pieceIndex,
 byte[] peice) { }

 public ArrayList search(String name) { }

 etc.

Can implement & test independent of network code

Can change later to database

4/26/05� Doc Comments on Assignment 7 slide# 18

Replace case statements with Polymorphism

public void writeMessage(Object message) {
 if (message instanceof HandShake) {
 HandShake handShake = (HandShake) message;
 10 lines of code to extract data out of handShake
 blah
 blah
 blah
 blah
 blah
 blah
 blah
 blah
 writeMessage(extractedData);
 }
 else if(message instanceof EndConnection) {
 EndConnection end = (EndConnection) message;
 8 lines of code to extract data out of end
 blah
 blah
 blah
 blah
 blah
 blah
 writeMessage(extractedData);
 }

 continue for 3.5 pages
 }
}

4/26/05� Doc Comments on Assignment 7 slide# 19

Using Polymorphism

public void writeMessage(Object message) {
 writeMessage(message.toBytes());
}

The removed lines go to each individual Message class

• Makes it easier to test code
• Keeps operations with data
• Reduced dependencies between classes

4/26/05� Doc Comments on Assignment 7 slide# 20

Replace case statements with Polymorphism

public void run() {
 do {

 BittorrentMessage request = in.readMessage();

 switch (request.id()) {
 case SEARCH_REQUEST:
 processSearchRequest(request);
 break;
 case REQUEST:
 sendMessagePiece(request);
 break;
 etc.

 default:
 sendErrorMessage();
 break;
 }

 } while (!request.isEndConnection());
}

public void run() {
 do {
 BittorrentMessage request = in.readMessage();
 request.processRequest(needed data);
 }
 } while (!request.isEndConnection());
}

4/26/05� Doc Comments on Assignment 7 slide# 21

