
1/22/04 Doc 2 Design Pattern Intro slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2004

Doc 2 Design Pattern Intro
Contents

Design Patterns ....................................................................... 2
Examples of Patterns ............................................................ 3

A Place To Wait .................................................................. 3
Chicken And Egg ................................................................ 5

Benefits of Software Patterns ................................................ 6
Common Forms For Writing Design Patterns........................ 7
Design Principle 1.................................................................. 8
Design Principle 2................................................................ 10

References

Patterns for Classroom Education, Dana Anthony, pp. 391-406, Pattern Languages of Program
Design 2, Addison Wesley, 1996

A Pattern Language, Christopher Alexander, 1977

Software Patterns, James Coplien, 1996, 2000, http://www1.bell-
labs.com/user/cope/Patterns/WhitePaper/

Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson,
Vlissides, 1995

Reading

Design Patterns chapter 1.

Copyright ©, All rights reserved. 2004 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.



1/22/04 Doc 2 Design Pattern Intro slide # 2

Design Patterns
What is a Pattern?

"Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice"

"Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem, and a solution"

Christopher Alexander on architecture patterns

"Patterns are not a complete design method; they capture
important practices of existing methods and practices
uncodified by conventional methods"

James Coplien



1/22/04 Doc 2 Design Pattern Intro slide # 3

Examples of Patterns
A Place To Wait1

The process of waiting has inherent conflicts in it.

Waiting for doctor, airplane etc. requires spending time
hanging around doing nothing

Can not enjoy the time since you do not know when you must
leave

Classic "waiting room"
• Dreary little room
• People staring at each other
• Reading a few old magazines
• Offers no solution

Fundamental problem
• How to spend time "wholeheartedly" and
• Still be on hand when doctor, airplane etc arrive

Fuse the waiting with other activity that keeps them in earshot
• Playground beside Pediatrics Clinic
• Horseshoe pit next to terrace where people waited

Allow the person to become still meditative
• A window seat that looks down on a street
• A protected seat in a garden
• A dark place and a glass of beer
• A private seat by a fish tank

                              
1 Alexander 1977, pp. 707-711



1/22/04 Doc 2 Design Pattern Intro slide # 4

A Place To Wait
Therefore:

"In places where people end up waiting create a situation
which makes the waiting positive. Fuse the waiting with some
other activity - newspaper, coffee, pool tables, horseshoes;
something which draws people in who are not simple waiting.
And also the opposite: make a place which can draw a person
waiting into a reverie; quiet; a positive silence"



1/22/04 Doc 2 Design Pattern Intro slide # 5

Chicken And Egg2

Problem

Two concepts are each a prerequisite of the other

To understand A one must understand B

To understand B one must understand A

A "chicken and egg" situation

Constraints and Forces

First explain A then B

• Everyone would be confused by the end

Simplify each concept to the point of incorrectness to explain
the other one

• People don't like being lied to

Solution

Explain A & B correctly by superficially

Iterate your explanations with more detail each iteration

                              
2 Anthony 1996



1/22/04 Doc 2 Design Pattern Intro slide # 6

Benefits of Software Patterns

By providing domain expertise patterns

• Reduce time to find solutions

• Avoid problems from inexpert design decisions

Patterns reduce time to design applications

• Patterns are design chunks larger than objects

Patterns reduce the time needed to understand a design



1/22/04 Doc 2 Design Pattern Intro slide # 7

Common Forms For Writing Design Patterns

Alexander - Originated pattern literature

GOF (Gang of Four) - Style used in Design Patterns text

Portland Form -Form used in on-line Portland Pattern
Repository

http://c2.com/cgi/wiki?PortlandPatternRepository

Coplien



1/22/04 Doc 2 Design Pattern Intro slide # 8

Design Principle 1

Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define
common interfaces for a set of classes

Declare variables to be instances of the abstract class not
instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of
objects they use, as long as the objects adhere to the interface
the client expects

Client classes/objects remain unaware of the classes that
implement these objects. Clients only know about the abstract
classes (or interfaces) that define the interface.



1/22/04 Doc 2 Design Pattern Intro slide # 9

Programming to an Interface
Java Collections
Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

Collection students = new XXX;
students.add( aStudent);

students can be any collection type

We can change our mind on what type to use



1/22/04 Doc 2 Design Pattern Intro slide # 10

Design Principle 2

Favor object composition over class inheritance

Composition
• Allows behavior changes at run time

• Helps keep classes encapsulated and focused on one task

• Reduce implementation dependencies

Inheritance

class A {
Foo x
public int complexOperation() { blah }

}

class B extends A {
public void bar() { blah}

}

Composition

class B {
A myA;
public int complexOperation() {

return myA.complexOperation()
}

public void bar() { blah}
}



1/22/04 Doc 2 Design Pattern Intro slide # 11

Parameterized Types

Generics in Ada, Eiffel, Java (jdk 1.5)
Templates in C++

Allows you to make a type as a parameter to a method or class

template <class TypeX>
TypeX min(  TypeX a, Type b )

{
return a < b ? a  :  b;
}

Parameterized types give a third way to compose behavior in
an object-oriented system



1/22/04 Doc 2 Design Pattern Intro slide # 12

Designing for Change

Some common design problems that GoF patterns that
address

• Creating an object by specifying a class explicitly

Abstract factory, Factory Method, Prototype

• Dependence on specific operations

Chain of Responsibility, Command

• Dependence on hardware and software platforms

Abstract factory, Bridge

• Dependence on object representations or implementations

Abstract factory, Bridge, Memento, Proxy

• Algorithmic dependencies

Builder, Iterator, Strategy, Template Method, Visitor

• Tight Coupling

Abstract factory, Bridge, Chain of Responsibility,
Command, Facade, Mediator, Observer

• Extending functionality by subclassing

Bridge, Chain of Responsibility, Composite,
Decorator, Observer, Strategy

• Inability to alter classes conveniently

Adapter, Decorator, Visitor


