
4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 1

CS 683 Emerging Technologies
Spring Semester, 2003

Doc 23 C# Object, Boxing, Operators & Struct
Contents

Object.. 2
public Object()... 3
~Object() (Finalize()).. 4
public virtual bool Equals(object obj)....................................... 5
public virtual int GetHashCode() ... 7
public static bool Equals(object objA, object objB).................. 8
public static bool ReferenceEquals(object objA, object objB) . 9
protected object MemberwiseClone() 10
public Type GetType() .. 11

Boxing ... 12
Nesting Classes .. 13
Operator Overload... 16
Struct... 22

References

C# Language Specification,
http://download.microsoft.com/download/0/a/c/0acb3585-3f3f-
4169-ad61-efc9f0176788/CSharp.zip

Programming C#, Jesse Liberty, O’Reilly, Chapters 5-7

2003 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright on this
document.

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 2

Object

Root of all classes

Methods in Object

• public Object()
• public virtual bool Equals(object obj)
• public static bool Equals(object objA, object objB)
• ~Object() (Finalize())
• public virtual int GetHashCode()
• protected object MemberwiseClone()
• public static bool ReferenceEquals(object objA, object objB)
• public Type GetType()

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 3

public Object()

Constructs a new instance of the System.Object class.

Usage

This constructor is called by constructors in derived classes

Can use directly to create an instance of the Object class.

Object instance can be used for synchronization

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 4

~Object() (Finalize())

Allows a System.Object to perform cleanup operations before
the memory allocated for the System.Object is automatically
reclaimed.

Default
The System.Object.Finalize implementation does nothing

System.Object.Finalize is automatically called after an object
becomes inaccessible, unless the object has been exempted
from finalization by a call to System.GC.SuppressFinalize

Conforming implementations of the CLI are required to make
every effort to ensure that for every object that has not been
exempted from finalization, the System.Object.Finalize method
is called after the object becomes inaccessible. However, there
may be some circumstances under which Finalize is not called.
Conforming CLI implementations are required to explicitly
specify the conditions under which Finalize is not guaranteed to
be called.

For example, Finalize might not be guaranteed to be called in
the event of equipment failure, power failure, or other
catastrophic system failures.

.

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 5

public virtual bool Equals(object obj)

Returns true if obj is equal to the current instance

otherwise, false

Requirements

x, y, and z represent non-null object references

• x.Equals(x) returns true

• x.Equals(y) returns the same value as y.Equals(x)

• If (x.Equals(y) && y.Equals(z)) returns true, then x.Equals(z)
returns true

• Successive invocations of x.Equals(y) return the same value
as long as the objects referenced by x and y are not modified

• x.Equals(null) returns false for non-null x

• Implementations of System.Object.Equals should not throw
exceptions

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 6

More Equals

Default

Returns true if the specified instance of Object and the current
instance are the same instance; otherwise, it returns false.

Value types

Overriding Equals improves performance over default
implementation

If you override Equals you should overload the equality operator

Reference types

Consider overriding Equals on a reference type if the semantics
of the type are based on the fact that the type represents some
value(s).

Most reference types should not overload the equality operator,
even if they override Equals. However, if you are implementing
a reference type that is intended to have value semantics, such
as a complex number type, you should override the equality
operator.

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 7

public virtual int GetHashCode()

It is recommended (but not required) that types overriding
Equals also override GetHashCode.

Hashtables cannot be relied on to work correctly if this
recommendation is not followed.

Returns

A System.Int32 containing the hash code for the current
instance

Examples

public struct Point {
int x;
int y;

public override int GetHashCode() {
return x ^ y;
}

}

public struct Int64 {
long value;

public override int GetHashCode() {
return ((int)value ^ (int)(value >> 32));
}

}

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 8

public static bool Equals(object objA, object objB)

Returns

true if one or more of the following statements is true:

• objA and objB refer to the same object,

• objA and objB are both null references,

• objA is not null and objA.Equals(objB) returns true;

otherwise returns false

 If the Equals(object obj) implementation throws an exception,
this method throws an exception.

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 9

public static bool ReferenceEquals(object objA, object objB)

Returns

True if a and b refer to the same object or are both null
references; otherwise, false

Description

This static method provides a way to compare two objects for
reference equality. It does not call any user-defined code,
including overrides of System.Object.Equals.

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 10

protected object MemberwiseClone()

Performs a shallow copy

Does not call any constuctor

System.Object.MemberwiseClone is protected (rather than
public) to ensure that from verifiable code it is only possible to
clone objects of the same class as the one performing the
operation (or one of its subclasses).

Cloning an object does not directly open security holes,
it does allow an object to be created without running any of its
constructors.

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 11

public Type GetType()
Example

using System;
public class MyBaseClass: Object {
}
public class MyDerivedClass: MyBaseClass {
}
public class Test {
 public static void Main() {
 MyBaseClass myBase = new MyBaseClass();
 MyDerivedClass myDerived = new MyDerivedClass();

 object o = myDerived;
 MyBaseClass b = myDerived;

 Console.WriteLine("mybase: Type is {0}", myBase.GetType());
 Console.WriteLine("myDerived: Type is {0}", myDerived.GetType());
 Console.WriteLine("object o = myDerived: Type is {0}", o.GetType());
 Console.WriteLine("MyBaseClass b = myDerived: Type is {0}",
b.GetType());
 }
}

output
mybase: Type is MyBaseClass
myDerived: Type is MyDerivedClass
object o = myDerived: Type is MyDerivedClass
MyBaseClass b = myDerived: Type is MyDerivedClass

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 12

Boxing

Value types are on the stack

Reference types are on the heap

Boxing wraps value types in a object and stored on the heap

Unboxing unwraps the value type and places it on the stack

using System;

public class BoxingExample
 {
 public static void Main()
 {
 int k = 123;

 // Parameter boxing
 Console.WrinteLine(k);

 // Variable boxing
 object boxed = k;

 // Cast is needed
 int unboxed = (int) boxed;
 }
 }

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 13

Nesting Classes

Nested class has access to out classed members

public class Outer
 {
 private int foo = 12;

 public class Inner
 {
 public int getFoo(Outer a)
 {
 return a.foo;
 }
 }
 }

public class Tester
 {
 public static void Main()
 {
 Outer a = new Outer();
 Outer.Inner test = new Outer.Inner();
 int foo = test.getFoo(a);
 }
 }

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 14

Nested Classes

Nested class does not automatically have access to an instance
of the outer class

public class Outer
 {
 private int foo = 12;

 public class Inner
 {
 public int getFoo(Outer a)
 {
 return foo; // Compile Error
 }
 }
 }

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 15

Nested Classes and Inheritance

public class Outer
 {
 private int foo = 12;

 public class Inner : Point
 {
 public int getFoo(Outer a)
 {
 return a.foo;
 }
 }
 }

public class Point
 {

// Code not shown
 }

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 16

Operator Overload

Unary Operators
Binary Operator
Conversion Operators

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 17

Conversion Operators

Implicit – no cast required
Explicit – requires a cast

Implicit Conversion Example

public class Foo {
 int value = 4;
 public Foo(int value) { this.value = value; }

 public static implicit operator int(Foo f) {
 return f.value;
 }
 public static implicit operator Foo(int x) {
 return new Foo(x);
 }
}

public class Tester {
 public static void Main(){
 Foo value = new Foo(8);
 int test = value;
 Foo newValue = 8;
 }
}

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 18

Chaining Implicit Casts

public class Tester
 {
 public static void Main()
 {
 Foo value = new Foo(8);
 int test = value;
 Foo newValue = 8;
 intCast(value);
 floatCast(value);
 }

 public static void intCast(int x) { }
 public static void floatCast(float x) { }

 }

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 19

Explicit Conversion

public class Foo
 {
 int value = 4;
 public Foo(int value)
 {
 this.value = value;
 }

 public static explicit operator int(Foo f)
 {
 return f.value;
 }
 public static explicit operator Foo(int x)
 {
 return new Foo(x);
 }
 }

public class Tester
 {
 public static void Main()
 {
 Foo value = new Foo(8);
 int test =(int) value;
 Foo newValue =(Foo) 8;
 }
 }

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 20

Operator Example
using System;
public struct Digit
{

byte value;
public Digit(byte value) {

if (value < 0 || value > 9) throw new ArgumentException();
this.value = value;

}

public Digit(int value): this((byte) value) {}

public static implicit operator byte(Digit d) {
return d.value;

}

public static explicit operator Digit(byte b) {
return new Digit(b);

}

public static Digit operator+(Digit a, Digit b) {
return new Digit(a.value + b.value);

}

public static Digit operator-(Digit a, Digit b) {
return new Digit(a.value - b.value);

}

public static bool operator==(Digit a, Digit b) {
return a.value == b.value;

}

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 21

Example Continued

public static bool operator!=(Digit a, Digit b) {
return a.value != b.value;

}

public override bool Equals(object value) {
if (value == null) return false;
if (GetType() == value.GetType()) return this == (Digit)value;
return false; }

public override int GetHashCode() {
return value.GetHashCode();

}
public override string ToString() {

return value.ToString();
}

}

class Test
{

static void Main() {
Digit a = (Digit) 5;
Digit b = (Digit) 3;
byte c = a;
Digit plus = a + b;
Digit minus = a - b;
bool equals = (a == b);
Console.WriteLine("{0} + {1} = {2}", a, b, plus);
Console.WriteLine("{0} - {1} = {2}", a, b, minus);
Console.WriteLine("{0} == {1} = {2}", a, b, equals);

}
}

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 22

Struct

Like a class except:

• Struct is a value type (one the stack)

• No inheritance

Structs – use for small data structures with value semantics

• Complex numbers
• points in a coordinate system
• key-value pairs in a dictionary

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 23

Struct Example
using System;

struct Point
{
 public int x, y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

public class Tester
 {
 public static void Main()
 {
 Point a = new Point(10, 10);
 Point b = a;
 a.x = 100;
 System.Console.WriteLine(b.x);
 }
 }

Output
10

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 24

Assignment

Assignment to a variable of a struct type creates a copy of the
value being assigned.

Point b = a;

When a struct is passed as a value parameter or returned as
the result of a function member, a copy of the struct is created.

A struct may be passed by reference to a function member
using a ref or out parameter.

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 25

Inheritance

All struct types implicitly inherit from System.ValueType,

System.ValueType inherits from class object.

A struct may implement interfaces,

A struct cannot specify a base class.

Struct types are
• never abstract
• always implicitly sealed.

abstract & sealed modifiers are not permitted in a struct

A struct member cannot be protected or protected internal

struct function members in a cannot be abstract or virtual

Override modifier is allowed only to override methods inherited
from the type System.ValueType.

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 26

Default Values

The default value of a struct is the value produced by setting

• all value type fields to their default value
• all reference type fields to null

Point a;
Point[] b = new Point[100];

The default constructor of a struct assigns default values

A struct cannot declare a parameterless instance constructor

Structs should be designed to consider the default initialization
state a valid state.

using System;
struct KeyValuePair
{

string key;
string value;
public KeyValuePair(string key, string value) {

if (key == null || value == null) throw new ArgumentException();
this.key = key;
this.value = value;

}
}

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 27

Boxing and Unboxing

 object a = new Point(10, 10);
 Point b = (Point)a;

Boxing and unboxing copies the values of a struct

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 28

Field Initializers

A struct cannot have variable initializers.

struct Point
{

public int x = 1; // Error, initializer not permitted
public int y = 1; // Error, initializer not permitted

}

4/22/03 Doc 23 C# Object, Boxing, Operators & Struct slide 29

Destructors

A struct is not permitted to declare a destructor.

Static constructors

Static constructors for structs follow most of the same rules as
for classes.

Static constructor is called before:

• An instance member of the struct is referenced.
• A static member of the struct is referenced.
• An explicitly declared constructor of the struct is called.

The creation of default values of struct types does not trigger
the static constructor

Point a;
Point[] b = new Point[10];

