2/14/02 Doc 6, Singleton &Template Method Slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2002
Doc 6 Singleton & Template Method

Contents

RS 0o] L1 o] o EO PP

(=T o | PR

17710 (Y= 1) o U

Y o] o] 1T= 1 | 13U

1 aT o] =T 0 0T=T] e= 11 To] o PSS

B = 7= SRR

(O TR

011 F= 11 2= RSSO
SINGIetoNs and StatiC.........cooiiiiiieee e 10
(07 0] E-7=To [11 o o7 =L U 11
JLIC= 0] 2 E= 1 G 1Y, =3 1 o T U 12
(oo 18 o (o o 1SRRI 12
(=T | PR 15
1710 (Y= 1) o RS 15
Y o] o] 1= | 1 YRR 18
0] (0o (1 = 19
L7 0] E-7=To [11 o o7 =L 20
1T 0] (=T 0 0T=T o1 ¢= 11T o SRR 22
Implementing a Template Method...............o o 23
(070 0] ¢= T 0] 1Y/ =Y i o To S 24
D= o7 1= RPN 26

References

http://c2.com/cgi/wiki? TemplateMethodPattern WikiWiki comments on the Template Method

http://wiki.cs.uiuc.edu/PatternStories/TemplateMethodPattern Stories about the Template
Method

Design Patterns: Elements of Resuable Object-Oriented Software, Gamma, Helm, Johnson,
Vlissides, Addison Wesley, 1995, pp. 127-134, 325-330

Pattern-Oriented Software Architecture: A System of Patterns (POSA 1), Buschman,
Meunier, Rohnert, Sommerlad, Stal, 1996,

The Design Patterns Smalltalk Companion, Alpert, Brown, Woolf, Addision-Wesley, 1998, pp.
91-101, 355-370

Copyright ©, All rights reserved. 2002 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

2/14/02 Doc 6, Singleton &Template Method Slide # 2

Singleton
Intent

Insure a class only has one instance, and provide a global
point of access to it
Motivation

There are times when a class can only have one instance

Applicability
Use the Singleton pattern when

* There must be only one instance of a class, and it must be
accessible to clients from a well-known access point

* When the sole instance should be extensible by
subclassing, and clients should be able to use an extended
instance without modifying their code

2/14/02 Doc 6, Singleton &Template Method Slide # 3
Examples of Using a Singleton
Java Security manager
All parts of a program must access the same security
manager
Once set a security manager cannot be changed in a program
Logging the activity of a server
All parts of the server should use the same instance of the

logging system

The server should not be able to change the instance of the
logging system was it has been set

Null Object

If Null object does not have state, only need one instance

2/14/02 Doc 6, Singleton &Template Method Slide # 4

Implementation
Java

// Only one object of this class can be created
class Singleton

{

private static Singleton _instance = null;
private Singleton() { fill in the blank }

public static Singleton getlnstance()
{
if (_instance == null)
_instance = new Singleton();
return _instance;

pu%blic void otherOperations() { blank; }
¥
class Program
l{aublic void aMethod()
§(= Singleton.getInstance();
¥

h

2/14/02 Doc 6, Singleton &Template Method Slide # 5
Java Singletons, Classes, Garbage Collection

Classes can be garbage collected in Java

Only happens when there are

* No references to instances of the class

* No references to the class

If a singleton's state is modified and its class is garbage

collected, its modified state is lost

To avoid having singletons garbage collected:

* Disable class garbage collection with -Xnoclassgc flag

* Insure singleton or class always has a reference

Store singleton or class in system property

2/14/02 Doc 6, Singleton &Template Method Slide # 6

Implementation
C++

// Only one object of this class can be created
class Singleton
{
private:
static Singleton™® _instance;
void otherOperations();

protected:
Singleton();

public:
static Singleton™® getInstance();

h

Singleton* Singleton::_instance = 0;

Singleton* Singleton::getlnstance()
{
if (_instance ==0)
_instance = new Singleton;
return _instance;

h

2/14/02 Doc 6, Singleton &Template Method Slide # 7

Implementation
Smalltalk

Smalltalk.CS635 defineClass: #SingletonExample
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: "
classInstanceVariableNames: 'uniquelnstance '
imports: "
category: 'Lecture notes'!

CS635.SingletonExample class methodsFor: 'instance creation'
current
uniquelnstance isNil if True:[uniquelnstance := super new].
Auniquelnstance
new

self error: 'Use current to get an instance of Class: ', self name

One could also use a private constant shared variable to store
the unique instance

2/14/02 Doc 6, Singleton &Template Method Slide # 8
Overriding new in Smalltalk

Since can control what new returns one might be tempted to
use:

new
uniquelnstance isNil if True:[uniquelnstance := super new].
Auniquelnstance

This can be misleading; user might think they are getting
different objects when calling new

Do we have two different windows below or not?

| left right |

left := SingleWindow new.
Right := SingleWindow new.
left position: 100@ 100.
right position: 500@ 100.

2/14/02 Doc 6, Singleton &Template Method Slide # 9
Naming the Access Method

GOF uses: instance()

POSA 1 uses: getinstance()

Smalltalk uses default and current

Selecting names is one of the more difficult problems in
object-oriented analysis. No name is perfect’

' Fowler pp- 9, Alpert pp. 98

2/14/02 Doc 6, Singleton &Template Method Slide # 10
Singletons and Static

If one needs only one instance of a class why not just
implement all methods as static?

» Classes do not inherit Object's protocol
* Hard to modify design if need more that one instance

* Builds bad habits in beginners

2/14/02 Doc 6, Singleton &Template Method Slide # 11
Consequences

* Controlled access to sole instance

* Reduced name space

* Permits subclassing

* Permits a variable number of instances
* More flexible than class operations

* Leads to improper use of globals

2/14/02 Doc 6, Singleton &Template Method Slide # 12

Template Method
Introduction
Polymorphism

class Account {
public:
void virtual Transaction(float amount)
{ balance += amount;}
Account(char* customerName, float InitialDeposit = 0);
protected:
char* name;
float balance;

¥

class JuniorAccount : public Account {
public: void Transaction(float amount) {// put code here}

¥

class SavingsAccount : public Account {
public: void Transaction(float amount) {// put code here}

¥

Account™ createNewAccount()

{
// code to query customer and determine what type of
// account to create

)

main() {
Account*® customer;
customer = createNewAccount();
customer->Transaction(amount);

¥

2/14/02 Doc 6, Singleton &Template Method Slide # 13

Deferred Methods

Account
r——=—=-=-=-= L
(Iremeselien) balance |
I name |
I J\
JuniorAccount SavingsAccount
r———-—-- L e ,
(Transaction) I (Transaction) |
| | | |
class Account {
public:
void virtual Transaction() = 0;
)

class JuniorAccount : public Account {
public
void Transaction() { put code here}

2/14/02 Doc 6, Singleton &Template Method Slide # 14

Template Methods

Account

[Tranaa-:tioﬂ j balance
C Tranzaction Subgartﬂ :J name

(Tranzaction Subpart B)
(Transzaction Subpart O)

Junio rAccnuntl/_ _\ SavingsAccount
-~ = = = = = Cr — - R |
(_Transaction Subpart A) I { Transaction Subpart C) |

class Account {
public:
void Transaction(float amount);
void virtual TransactionSubpartA();
void virtual TransactionSubpartB();
void virtual TransactionSubpartC();

by

void Account::Transaction(float amount) {
TransactionSubpartA(); TransactionSubpartB();
TransactionSubpartC(); /l EvenMoreCode;

¥

class JuniorAccount : public Account {
public: void virtual TransactionSubpartA(); }

class SavingsAccount : public Account {
public: void virtual TransactionSubpartC(); }

Account*® customer;
customer = createNewAccount();
customer->Transaction(amount);

2/14/02 Doc 6, Singleton &Template Method Slide # 15

Template Method- The Pattern
Intent

Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses

Template Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm’s structure

Motivation

An application framework with Application and Document
classes

Abstract Application class defines the algorithm for opening
and reading a document

void Application::OpenDocument (const char® name) {
if (!CanNotOpenDocument (name)) {
return;

h

Document* doc = DoCreateDocument();

if (doc) {
_docs->AddDocument(doc);
AboutToOpenDocument(doc);
Doc->Open();
Doc->DoRead();

}

2/14/02 Doc 6, Singleton &Template Method Slide # 16

Smalltalk Examples
PrintString

Object>>printString
| aStream |
aStream := WriteStream on: (String new: 16).
self printOn: aStream.
AaStream contents

Object>>printOn: aStream
| title |
title := self class printString.
aStream nextPutAll:
((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a ']).
aStream nextPutAll: title

Object provides a default implementation of printOn:

Subclasses just override printOn:

2/14/02 Doc 6, Singleton &Template Method Slide # 17
Collections & Enumeration

Standard collection iterators
collect:, detect:, do:, inject:into:, reject:, select:

Collection>>collect: aBlock
| newCollection |
newCollection := self species new.
self do: [:each | newCollection add: (aBlock value: each)].
AnewCollection

Collection>>do: aBlock
self subclassResponsibility

Collection>>inject: thisValue into: binaryBlock
| nextValue |
nextValue := thisValue.
self do: [:each | nextValue := binaryBlock value: nextValue value: each].
AnextValue

Collection>>reject: aBlock
Aself select: [:element | (aBlock value: element) == false]

Collection>>select: aBlock
| newCollection |
newCollection := self species new.
self do: [:each | (aBlock value: each) ifTrue: [newCollection add: each]].
AnewCollection

Subclasses only have to implement:
species, do:, add:

2/14/02 Doc 6, Singleton &Template Method Slide # 18
Applicability

Template Method pattern should be used:

* To implement the invariant parts of an algorithm once.
Subclasses implement behavior that can vary

* When common behavior among subclasses should be
factored and localized in a common class to avoid code
duplication

To control subclass extensions

Template method defines hook operations

Subclasses can only extend these hook operations

2/14/02

Doc 6, Singleton &Template Method Slide # 19

Structure
AbstractUCluss >
code:
TemplateMethod() = |= = = = | PrimitiveOperationl():;
Primitive Operation () more code:
PrimitiveOperation2() Primitive D;JEratiﬂnZ() :
still more code;
ConcreteClass
Primitrve Operation]()
Primitrve Operation?()

* AbstractClass

Participants

Defines abstract primitive operations that concrete
subclasses define to implement steps of an algorithm

Implements a template method defining the skeleton of an

algorithm

e ConcreteClass

Implements the primitive operations

Different subclasses can implement algorithm details

differently

2/14/02 Doc 6, Singleton &Template Method Slide # 20
Consequences
This is the most commonly used of the 23 GoF patterns
Important in class libraries
Inverted control structure
Parent class calls subclass methods

Java's paint method is a primitive operation called by a
parent method

Beginning Java programs don't understand how the
following works:

import java.awt.*;
class HelloApplication extends Frame
{
public void paint(Graphics display)
{
int startX = 30;
int startY = 40;
display.drawString("Hello World", startX, startY);

¥
¥

2/14/02 Doc 6, Singleton &Template Method Slide # 21
Consequences

Template methods tend to call:

* Concrete operations

* Primitive operations - must be overridden
* Factory methods

* Hook operations

Methods called in Template method and have default
implementation in AbstractClass

Provide default behavior that subclasses can extend
Smalltalk's printOn: aStream is a hook operation

It is important to denote which methods
* Must overridden

e Can be overridden

e Can not be overridden

2/14/02 Doc 6, Singleton &Template Method Slide # 22
Implementation
Using C++ access control

Primitive operations can be made protected so can only be
called by subclasses

Template methods should not be overridden - make
nonvirtual

Minimize primitive operations
Naming conventions

Some frameworks indicate primitive methods with special
prefixes

MacApp use the prefix "Do"

2/14/02 Doc 6, Singleton &Template Method Slide # 23
Implementing a Template Method?

* Simple implementation
Implement all of the code in one method

The large method you get will become the template method

* Break into steps
Use comments to break the method into logical steps

One comment per step

* Make step methods

Implement separate method for each of the steps

* Call the step methods

Rewrite the template method to call the step methods

* Repeat above steps

Repeat the above steps on each of the step methods
Continue until:

All steps in each method are at the same level of
generality

All constants are factored into their own methods

2 See Design Patterns Smalltalk Companion pp. 363-364. Also see Reusability Through Self-Encapsulation, Ken
Auer, Pattern Languages of Programming Design, 1995, pp. 505-516

2/14/02 Doc 6, Singleton &Template Method Slide # 24

Constant Methods
Template method is common in lazy initialization®

public class Foo {
Bar field;

public Bar getField() {
if (field == null)
field = new Bar(10);
return field;
}
}

What happens when subclass needs to change the default
field value?

public Bar getField() {
if (field == null)
field = defaultField();
return field;
}
protected Bar defaultField() {
return new Bar(10);

h

Now a subclass can just override defaultField()

3 See http://www.eli.sdsu.edu/courses/spring01/cs683/notes/coding/coding.html#Heading19 or Smalltalk Best
Practice Patterns, Kent Beck, Prentice Hall, 1997 pp. 85-86

2/14/02 Doc 6, Singleton &Template Method Slide # 25
The same idea works in constructors

public Foo() {
field := defaultField();

h

Now a subclass can change the default value of a field by
overriding the default value method for that field

2/14/02 Doc 6, Singleton &Template Method Slide # 26
Exercises

1. Find the template method in the Java class hierarchy of
Frame that calls the paint(Graphics display) method.

3. Find other examples of the template method in Java or
Smalltalk.

4. When | did problem one, my IDE did not help much. How
useful was your IDE/tools? Does this mean imply that the use
of the template method should be a function of tools available
in a language?

5. Much of the presentation in this document follows very
closely to the presentation in Design Patterns: Elements of
Reusable Object-Oriented Software. This seems like a waste
of lecture time (and perhaps a violation of copyright laws).
How would you suggest covering patterns in class?

