1/29/02 CS635 Doc 1 Introduction slide# 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2002
Doc 1 Introduction

Contents

What iS thiS COUISE ADOUL?........eeieiiiii et e e e e e e et r e e e e e e s e s nt e e e e eaeeessannesaeeeeaeeaeaanes 2
Y 011 7= o 1) 1 3

[aTor=T o 10 F= Ui [0 o (TP PO UPPRPPUPPPRN 4

(T} (o] a0 = io o 1N = o [T T SRR 4
O A =T3S 5
L= 1T PR PPRRRRN 5
B [o] o g Yo RS I U 5
WY UNIE TESHNG ..ttt e s 6
WHhEN 10 WIHEE UNIE TOSES .o eeiiiiiie et e e e e e e ettt e e e e e e e e s e nne et e e e e e e e e eeannnnnnneeeaaeeas 7

R 1o [G2 1= 1o Lo TP P PP PPPPPPPPN 9
COUPIING & CONBSION. ...ttt e e et e e e e e st b et e s e sbe e e e e aneneeenanes 14
(@70]18]][15T R PSP PP OTP PP 14
(7o) a1=TS (o] o IEUUR OO OOPOP PP PPPPPPPPPPPPRS 14
y=T= (o [T Lo IS 0 =11 PRSP 17
SMaAlltalk BASIC RUIES........oeiiiiiiiie ettt et e e et e e s s st e e e e nb e e e e e enres 18
THE WEINT STUFF ..o e e et e e e et e e e e snse e e e e e nnneeeeeenrees 19
REfACIONNG ..o, 23
The BroKeN WINOOWcoiiiiiiiiiiiie ettt ettt e e e e e et e e e e e e e s et ee e e e e e e e e e e annnnneneaaaeess 24
B3 =T (Tt - L o TR 25
Familiarity VErse COMIOITcoiiiiiiei ittt s e e e e e e e e s s nreeeeeanes 26
(Y= F= ot (o] 10T OO P PP PPPPRPOPRPRPN 27
Sample Refactoring: EXract MEethOdc.cuviiiiiiiiiii e 28

1Y [o 1AV (o] o TSR PPPPRPO 28

1Y 1o = g [P PPRP 29
D= 11]] [PPSR 31

References

Testing for Programmers, Brian Marick, OOPSLA 2000 Tutorial, OOPSAL Oct 2000, Minneapolis,
Minnesota,

Used with permission

A PDF version of the course can be downloaded from http://www.testing.com/writings.html

Refactoring: Improving the Design of Existing Code, Fowler, 1999, pp. 110-116, 237-270
The Pragmatic Programmer, Hunt & Thomas, Addison Wesley Longman, 2000

Quality Software Management Vol. 4 Anticipating Change, Gerald Weinberg, Dorset House
Publishing, 1997

Copyright ©, All rights reserved. 2002 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego,
CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license defines the
copyright on this document.

1/29/02 CS635 Doc 1 Introduction slide# 2
What is this Course About?

Writing quality OO code

Some basic tools:

- Abstraction
Information Hiding
Encapsulation
Unit Testing
Coupling & Cohesion
Design Patterns
Refactoring

1/29/02 CS635 Doc 1 Introduction slide# 3

Abstraction

“Extracting the essential details about an item or group of
items, while ignoring the unessential details.”

Edward Berard

“The process of identifying common patterns that have
systematic variations; an abstraction represents the
common pattern and provides a means for specifying which
variation to use.”

Richard Gabiriel

Example

Pattern: Priority queue

Essential Details: length
items in queue
operations to add/remove/find item

Variation: link list vs. array implementation
stack, queue

1/29/02 CS635 Doc 1 Introduction slide# 4

Encapsulation

Enclosing all parts of an abstraction within a container

Information Hiding

Hiding parts of the abstraction

1/29/02 CS635 Doc 1 Introduction slide# 5
Unit Testing
Testing
Johnson's Law

If it is not tested it does not work

Types of tests
Unit Tests

Tests individual code segments

Functional Tests

Test functionality of an application

1/29/02 CS635 Doc 1 Introduction slide# 6

Why Unit Testing

If it is not tested it does not work

The more time between coding and testing

More effort is needed to write tests
More effort is needed to find bugs
Fewer bugs are found

- Time is wasted working with buggy code
Development time increases
Quality decreases

Without unit tests

Code integration is a nightmare
Changing code is a nightmare

1/29/02 CS635 Doc 1 Introduction slide# 7
When to Write Unit Tests
First write the tests

Then write the code to be tested

Writing tests first saves time

Forces you to understand the interface & functionality of
the code

Removes temptation to skip tests

Helps you avoid bugs

1/29/02 CS635 Doc 1 Introduction slide# 8

What to Test

Everything that could possibly break

Test values
Inside valid range

Outside valid range
On the boundary between valid/invalid

GUIs are very hard to test

Keep GUI layer very thin
Unit test program behind the GUI, not the GUI

1/29/02 CS635 Doc 1 Introduction slide# 9
Testing Catalog
Common problem areas - what to focus tests on.
Numbers
Test the boundaries of the range

Smallest number

- Just below the smallest number
Largest number

- Just above the largest number

Test zero - special number that often is not handled
correctly

for (int k = 12; k < 23; k++)
{

put your code here

}

1/29/02 CS635 Doc 1 Introduction slide# 10
Strings

Test your code using the empty string

1/29/02 CS635 Doc 1 Introduction slide# 11
Collections
Test
Empty collection
Collection that contains exactly one element

Maximum possible size (at least more than one)

Does your linked list work in these cases?

1/29/02 CS635 Doc 1 Introduction slide# 12
Searching
Test a search that has:
No matches
Exactly one match

More than one match

These are the places were searches make mistakes

1/29/02 CS635 Doc 1 Introduction slide# 13
When you find a bug in your code
Write a test for it

Then fix the bug

Keep track of the bugs you make

Those that do not remember history are condemned to
repeat the mistakes of the past

Programmers tend to repeat the same mistakes
Keep a list of the types of mistakes you make

Write tests for them before you write code

1/29/02 CS635 Doc 1 Introduction slide# 14

Coupling & Cohesion
Coupling

Strength of interaction between objects in system

Cohesion

Degree to which the tasks performed by a single module are
functionally related

1/29/02 CS635 Doc 1 Introduction slide# 15
Cohesion Linked List Example - A

public class LinkedList
{
void print()
{
String listString;
lots of code to create string for the list
System.out.printin(listString);

}
}

LinkedList>>print
| listString |
lots of code to create string for the list
Transcript
show: listString;
Cr.

1/29/02 CS635 Doc 1 Introduction slide# 16
Cohesion Linked List Example - B

public class LinkedList

{
public String toString()

{

String listString;

lots of code to create string for the list
return listString;

}

void print()
{
System.out.printin(toString);

}
}

LinkedList>>printOn: aStream
lots of code to create string for the list

LinkedList>>print
Transcript
show: sdlf printString;
Cr.

1/29/02 CS635 Doc 1 Introduction slide# 17
Reading Smalltalk
OOPS Rosette Stone

Java Smalltalk
this self
super super
Field Instance variable
Method Method, message
"A String" ‘A String'
/* a comment */ "a comment"
X =D5; X :=5.
X == y X == y
x.equals(y) X=Yy
if (y >3) y>3

X=12; ifTrue: [x :=12].
if (y > 3) y>3

X =12; ifTrue: [x :=12]
else ifFalse: [x := 3].

X=09;
z = Point(2, 3); 2 =2@ 3.
Circle x = new Circle(); | Xy
Circle y = new Circle(0, 0 3); x := Circle new.

Y := Circle origin 0 @ 0O radius: 3

a.method() a method
a.foo(x) a foo: x
a.substring(4,7) a copyFrom: 4 to: 7
return 5; NS,
Java Smalltalk
class Circle { Circle>>area

public float area() {
return this.radius().squared() * pi();
}

}

Aself radius squared * self pi

Note Class>>method is not Smalltalk syntax. It is just a convention to show which

class contains the method

1/29/02 CS635 Doc 1 Introduction slide# 18

Smalltalk Basic Rules

- Everything in Smalltalk is an object

- All actions are done by sending a message to an object

- Every object is an instance of a class

- All classes have one and only parent (super) class
Object is the root class

1/29/02 CS635 Doc 1 Introduction slide# 19

The Weird Stuff
Methods - No Argument

C/C++/Java Smalltalk
method() method
Java
public class LinkedListExample
{
public static void main(String[] args)
{
LinkedList list = new LinkedList();
list.print();
}
}
Smalltalk
| list |

list := LinkedList new.
list print.

1/29/02 CS635 Doc 1 Introduction slide# 20

Methods - One Argument

C/C++/Java Smalltalk

method(argument) method: argument

Java
public class OneArgExample

{
public static void main(String[] args)

{

System.out.printin("Hi mom");

}
}

Smalltalk

Transcript show: 'Hi Mom'.

1/29/02 CS635

Doc 1 Introduction slide# 21

Methods - Multiple Arguments

C/C++/Java

Smalltalk

method(argl, arg2, arg3)

method: argl
second: arg2
third: arg3

Java

public class MultipleArgsExample

{

public static void main(String[] args)

{

String list ="Thisisasample String";

list.substring(2, 8);
}
}

|list|

list :="Thisisasample String'.

list
copyFrom: 2
to: 8

Smalltalk

1/29/02 CS635 Doc 1 Introduction slide# 22

Cascading Messages

Transcript
show: 'Name: *;
show: _name;
cr;
show: 'Amount: *;
show: outstanding;
Cr.

Is short hand notation for:

Transcript show: 'Name: .
Transcript show: _name.
Transcript cr.

Transcript show: 'Amount: '
Transcript show: outstanding.
Transcript cr.

1/29/02 CS635 Doc 1 Introduction slide# 23
Refactoring

We have code that looks like:

at: anlnteger put: anObject
(smallKey ~= largeKey)
ifTrue:
[(aninteger < smallKey)
IfTrue: [self atLeftTree: anlnteger put: anObject]
iIfFalse: [(smallKey = anlnteger)
ifTrue: [smallVaue := anObject]
ifFalse: [(anlnteger < largeKey)
ifTrue: [self aaMiddleTree: anlnteger put: anObject]
ifFalse: [(largeKey = aninteger)
ifTrue: [largeVaue := anObject]
ifFalse: [(largeKey < aninteger)
if True: [self atRightTree: anlnteger put: anObject]]]]]]
ifFalse:
[self addNewKey: aninteger with: anObject].

Now what?

1/29/02 CS635 Doc 1 Introduction slide# 24
The Broken Window®
In inner cities some buildings are:
Beautiful and clean
- Graffiti filled, broken rotting hulks
Clean inhabited buildings can quickly become abandoned
derelicts

The trigger mechanism is:

- A broken window

If one broken window is left unrepaired for a length of time

Inhabitants get a sense of abandonment
More windows break
- Graffiti appears
Pipes break
- The damage goes beyond the owner's desire to fix

Don't live with Broken Widows in your code

! Pragmatic Programmer, pp. 4-5

1/29/02 CS635 Doc 1 Introduction slide# 25
The Perfect Lawn

A visitor to an Irish castle asked the groundskeeper the
secret of the beautiful lawn at the castle

The answer was:
- Just mow the lawn every third day for a hundred years
Spending a little time frequently

Is much less work that big concentrated efforts

Produces better results in the long run

So frequently spend time cleaning your code

1/29/02 CS635 Doc 1 Introduction slide# 26

Familiarity verse Comfort

Why don't more programmers/companies continually:
- Write unit tests

Refactor
- Work on improving programming skills

Familiarity is always more powerful than comfort.

-- Virginia Satir

1/29/02 CS635 Doc 1 Introduction slide# 27
Refactoring

Refactoring is the modifying existing code without adding

functionality

Changing existing code is dangerous

Changes can break existing code

To avoid breaking code while refactoring:

Need tests for the code
Proceed in small steps

1/29/02 CS635 Doc 1 Introduction slide# 28
Sample Refactoring: Extract Method?
You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the
purpose of the method

Motivation
Short methods:
Increase possible reuse

Makes high level methods easier to read
Makes easier to override methods

? Refactoring Text, pp. 110-116

1/29/02 CS635 Doc 1 Introduction slide# 29
Mechanics
Create a new method - the target method
Name the target method after the intention of the method

With short code only extract if the new method name is
better than the code at revealing the code's intention

Copy the extracted code from the source method into the
target method

Scan extracted code for references to local variables
(temporary variables or parameters) of the source method

If a temporary variable is used only in the extracted code
declare it local in the target method

If a parameter of the source method is used in the
extracted code, pass the parameter to the target method

1/29/02 CS635 Doc 1 Introduction slide# 30
Mechanics - Continued

See if the extracted code modifies any of the local
variables of the source method

If only one variable is modified, then try to return the
modified value

If more than one variable is modified, then the extracted
code must be modified before it can be extracted

Split Temporary Variables or Replace Temp with Query
may help

Compile when you have dealt with all the local variables

Replace the extracted code in source code with a call to
the target method

Compile and test

1/29/02 CS635 Doc 1 Introduction slide# 31

Example®
No Local Variables

Note | will use Fowler's convention of starting instance
variables with " ",
printOwing

| outstanding |

outstanding := 0.0.
Transcript

s lkkkkhkhkkhkkhkhkhkhhkhkkhkhkkkhk k!
show:)

cr;
show: *** Customer Owes***"
cr;

L & & & & & b & . . b b b b b b b b b L
show:

Cr.
outstanding := _ordersinject: O into: [:sum :each | sum + each].

Transcript
show: 'Name: "
show: name;
Cr;
show: 'Amount: ';
show: outstanding;
Cr.

? Example code is Squeak version of Fowler's Java example

1/29/02 CS635 Doc 1 Introduction slide# 32
Extracting the banner code we get:

printOwing
| outstanding |

outstanding := 0.0.
self printBanner.

outstanding := _ordersinject: O into: [:sum :each | sum + each].

Transcript
show: 'Name: ';
show: _name;
Cr;
show: 'Amount: ";
show: outstanding;
Cr.

printBanner
Transcript

s lkkkkhkhkhkkhkkhkhkhkkhhkhkkhkhkhkkkhkk!
Show: :

cr;
show: *** Customer Owes***"
cr;

s lkkkkhkhkhkkhkhkhkhkhhkhkkhkhkhkhk k!
show:)

Cr

1/29/02 CS635 Doc 1 Introduction slide# 33
Examples: Using Local Variables
We can extract printDetails: to get

printOwing
| outstanding |
self printBanner.
outstanding := _ordersinject: O into: [:sum :each | sum + each].
self printDetails. outstanding

printDetails: aNumber
Transcript

show: 'Name: "
show: name;
cr;
show: 'Amount: ';
show: aNumber;
Cr.

Then we can extract outstanding to get:
printOwing
self
printBanner;
printDetails: (self outstanding)

outstanding
A ordersinject: O into: [:sum :each | sum + each]

The text stops here, but the code could use more work

1/29/02 CS635 Doc 1 Introduction slide# 34

Using Add Parameter (275)

printBanner
Transcript

s lkkkkhkhkkhkkhkhkhkhhkhkkkhkhkkhkhk k!
show:)

cr;
show: *** Customer Owes***";
cr;
g’]OW Ikkkhkkhkkhkkhkkhkkhkkhkhkhkkkkkhkkkkk!-
cr

becomes:

printBannerOn: aStream
aStream

s lkkkkhkhkkkhkkkhkhkhkkkhkkkhkhkk!
show: :

cr;
show: *** Customer Owes***"
Cr;

. 1 1.
§]OW khkkkkhkkhkkhkkhkkkhkkhkkk%k

cr
Similarly we do printDetails and printOwing

printOwingOn: aStream
self printBannerOn: aStream.
self
printDetails: (self outstanding)
on: aStream

Perhaps this should be called Replace Constant with
Parameter

