4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2002
Doc 15 Decorator, Chain of Responsibility, OO Recursion

Contents

DECOratOr. ... e
Class Structure.........ooo o
Motivation - TeXt VIEWS ..o,
APPHCabIlity ..o
CONSEUUENCESoeiiiieeiee e e e
Implementation ISSUES ...,
EXAMPIES ..o

Chain of Responsibility ..o, 10
INteNt ... 10
Class StruCture.........cou i 10
Participants ..o 11
CONSEUUENCESoeeeiieii e e e e e 11
MOtIVatiON ... 12
Whento USe ..., 13
Implementation ISSUES ... 16

Object-Oriented ReCUrsionccoovvviiiiiiiiieece e 20

References

Design Patterns: Elements of Reusable Object-Oriented Software,
Gamma, Helm, Johnson, Vlissides, Addison-Wesley, 1995, pp. 175-
184, 223-232

The Design Patterns Smalltalk Companion, Alpert, Brown,
Woolf, 1998, pp. 161-178, 225-244

Copyright ©, All rights reserved. 2002 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 2
Decorator
Changing the Skin of an Object

Class Structure

Component
operation()

&

ConcreteComponent Decorator
operation() o — component->operation()®]
ConcreteDecoratorA ConcreteDecoratorB
addedState addedBehavior()
operation() _
operation() C|>

super->operation()
addedBehavoir()

Runtime Structure

(aDecorator)

Q:omponent’ g,

~
_(aDecorator _ (aComponen“

component@®
k ~/ k)

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 3
Motivation - Text Views
A text view has the following features:

side scroll bar
Bottom scroll bar
3D border

Flat border

This gives 12 different options:

TextView
TextViewWithNoBorder&SideScrollbar
TextViewWithNoBorder&BottomScrollbar
TextViewWithNoBorder&Bottom&SideScrollbar
TextViewWith3DBorder
TextViewWith3DBorder&SideScrollbar
TextViewWith3DBorder&BottomScrollbar
TextViewWith3DBorder&Bottom&SideScrollbar
TextViewWithFlatBorder
TextViewWithFlatBorder&SideScrollbar
TextViewWithFlatBorder&BottomScrollbar
TextViewWithFlatBorder&Bottom&SideScrollbar

How to implement?

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 4

Solution 1 - Use Object Composition

TextView

O aBorder o
verticalScroll

horizontalScrollg———

v
Border Scrollbar
A A
NoBord Flat Vertical Horizontal
ree 3DBorder o Scrollbar Scrollbar

class TextView {
Border myBorder;
ScrollBar verticalBar;
ScrollBar horizontalBar;

public void draw() {
myBorder.draw();
verticalBar.draw();
horizontalBar.draw();
code to draw self

h

etc.

h

But TextView knows about all the variations!
New type of variations require changing TextView
(and any other type of view we have)

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 5

Solution 2 - Use Decorator
Object Composition Inside out
Change the skin of an object not it guts

TextView has no borders or scrollbars!
Add borders and scrollbars on top of a TextView

VisualComponent

A

TextView VisualDecorator
component
Border Scrollbar
Flat Vertical Horizontal
3DBorder Scrollbar Scrollbar

Runtime Structure

@BorderDecorator\

aScrollDecorator
-((aTextView \

/ kcomponent ® y .k)

kcomponent ®

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 6
Applicability
Use Decorator:

* To add responsibilities to individual objects dynamically and
transparently

* For responsibilities that can be withdrawn

* When subclassing is impractical - may lead to too many
subclasses

Commonly used in basic system frameworks

Windows, streams, fonts

Consequences
More flexible than static inheritance
Avoids feature laden classes high up in hierarchy
Lots of little objects
A decorator and its components are not identical
So checking object identification can cause problems

if (aComponent instanceof TextView) blah

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 7
Implementation Issues

Keep Decorators lightweight

Don't put data members in VisualComponent

Have Decorator forward all component operations

Three ways to forward messages

* Simple forward
 Extended forward

e Override
Component | o
operation()
ConcreteComponent Decorator
operation() component
operation()

ConcreteDecoratorA ConcreteDecoratorB

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 8

Examples
Java Streams

ButferedInputStream

Feading FilelnputStrearn ¢ ASCIInputStream
File

Example. . . .
jav a inputFile bufferedFile cin

File] —= I —# [—& I

import java.io.*;

import sdsu.io.*;

class ReadingFileExample
{

public static void main(String args[]) throws Exception
{
FileInputStream inputFile;
BufferedInputStream bufferedFile;
ASClIInputStream cin;

inputFile = new FilelnputStream("ReadingFileExample.java");
bufferedFile = new BufferedInputStream(inputFile);
cin = new ASClIIInputStream(bufferedFile);

System.out.println(cin.readWord());

for (int k=1; k < 4; k++)
System.out.println(cin.readLine());

¥
¥

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 9
Insurance
Insurance policies have payment caps for claims

Sometimes the people with the same policy will have different
caps

A decorator can be used to provide different caps on the same
policy object

Similarly for deductibles & copayments

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 10

Chain of Responsibility

Intent

Avoid coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request. Chain the
receiving objects and pass the request along the chain until an

object handles it.

Class Structure

—

Client———==| Handler

successor &

handleRequest() o+ — successor->handIeRequest()®|

&

ConcreteHandler1

ConcreteHandler2

handleRequest()

handleRequest()

Sample Object Structure

aClient

\
aConcreteHandler

(o)
| aHandle@—=
ksuccessor

< [
N

aConcreteHandler

L

J successor

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 11

Participants

Handler

Defines the interface for handling the requests

May implement the successor link

ConcreteHandler

Handles requests it is responsible for
Can access its successor
Handles the request if it can do so, otherwise it forwards the
request to its successor
Consequences
Reduced coupling

Added flexibility in assigning responsibilities to objects

Not guaranteed that request will be handled

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 12
Motivation

Context Help System

(adaveDialog \]

handler T
(aPrintButton) : R(mpph“““‘mw
e N tondler
(aPrintDialog
)

handler

(aCancelEuttun
Ulﬂlldlﬂr)

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 13

When to Use

When more than on object may handle a request, and the
handler isn't known a priori

When you want to issue a request to one of several objects
without specifying the receiver explicitly

When the set of objects that can handle a request should be
specified dynamically

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 14

How does this differ from Decorator?

(adaveDialog \]

handler T
(aPrintButton) : R(mpph“““‘mw
e N ondler
(aPrintDialog
)

handler

(aCancelEuttun
Ulﬂlldlﬂr)

(aﬂurderﬂecumturﬁ |/ aScrollDecorator) (a,TextVieww

L‘Gﬂﬂlpﬂﬂﬁﬂt Hb—l\mmpﬂnﬂnt j—--k J

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 15
Chain of Command
Like the military
A request is made

It goes up the chain of command until someone has the
authority to answer the request

Very
General

General General

i)lecn‘lc Spe}:ific SpeCIflc /épecmc

Very Very Very er_y_ Very Very
Specific Specific Specific Specific Specific Specific

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 16

Implementation Issues
The successor chain

* Use existing links in the program

The concrete handlers may already have pointers to their
successors, so just use them

e Define new links

Give each handler a link to its successor

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 17
Representing Requests
» Each request can be a hard-coded

abstract class HardCodedHandler
{

private HardCodedHandler successor;

public HardCodedHandler(HardCodedHandler aSuccessor)
{ successor = aSuccessor; }

public void handleOpen()
{ successor.handleOpen(); }

public void handleClose()
{ successor.handleClose(); }

public void handleNew(String fileName)
{ successor.handleClose(fileName); }

h

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 18
Representing Requests
* A single method implements all requests

abstract class SingleHandler {
private SingleHandler successor;

public SingleHandler(SingleHandler aSuccessor) {
sUCCeSsor = aSuccessor;

h

public void handle(String request) {
successor.handle(request);

¥
¥

class ConcreteOpenHandler extends SingleHandler {
public void handle(String request) {
switch (request) {
case "Open" : do the right thing;
case "Close" : more right things;
case "New" : even more right things;
default: successor.handle(request);

¥
¥
¥

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 19

Representing Requests
* Single handle method with Request Object for parameters

abstract class SingleHandler {
private SingleHandler successor;

public SingleHandler(SingleHandler aSuccessor)
{successor = aSuccessor; }

public void handle(Request data)
{ successor.handle(data); }

¥

class ConcreteOpenHandler extends SingleHandler {
public void handle(Open data)
{ // handle the open here }

¥

class Request {
private int size;
private String name;
public Request(int mySize, String myName)
{ size = mySize; name = myName; }

public int size() { return size; }
public String name() { return name;}

¥

class Open extends Request
{// add Open specific stuff here}

class Close extends Request
{ // add Close specific stuff here}

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 20

Object-Oriented Recursion
Recursive Delegation

A method polymorphically sends its message to a different
receiver

Eventually a method is called that performs the task

The recursion then unwinds back to the original message send

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 21
Example

class BinarySearchTree {
Node root

boolean containsKey(Object key) {
return root.containsKey(key);

¥

String toString() {
return "Tree(" + root.toString() + ")";

¥
blah

¥

4/18/02 Doc 15 Decorator, Chain of Responsibility, OO Recursion slide # 22

Example Continued
class BinaryNode implements Node {
Node left;
Node right;
Object key;
Object value;

boolean containsKey(Object key) {
if this.key == key
return true;
if this.key < key
return right.containsKey(key);
if this.key > key
return left.containsKey(key);

b

String toString() {
return "(" + left.toString() + key + right.toString() + ")";

¥
blah

¥

class NullNode implements Node {

boolean containsKey(Object key) {
return false;

¥

String toString() {

nmn,

return " 7,

¥
blah

