
3/21/02 Doc 10, Coupling slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2001

Doc 10 Couping
Contents

Coupling..6
Relationships between Objects..6

Different Ways to Implement Uses..7
Heuristics for the Uses Relationship..9
Data Coupling ..14
Control Coupling ..30
Global Data Coupling...35
Internal Data Coupling ...36
Lexical Content Coupling ...37

Object Coupling ..38
Interface Coupling..39

Object Abstraction Decoupling..40
Selector Decoupling ..42
Primitive Methods..43
Selectors..44
Constructors ..45

Inside Internal Object Coupling..54
Outside Internal Coupling from Underneath ..56
Outside Internal Coupling from the Side..57

References

Object Coupling and Object Cohesion, chapter 7 of Essays on Object-
Oriented Software Engineering, Vol. 1, Berard, Prentice-Hall, 1993

Object-Oriented Design Heuristics, Riel, Addison-Wesley, 1996

Copyright ©, All rights reserved. 2002 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego,
CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license defines the
copyright on this document.

3/21/02 Doc 10, Coupling slide # 2

Quality of Objects

Decomposing systems into smaller pieces aids software
development

100 functions each 100 line of code long is "better" than

One function 10,000 lines of code long

3/21/02 Doc 10, Coupling slide # 3

Parnas (72) KWIC (Simple key word in context) experiment

Parnas compared two different implementations

• Modules based on steps needed to perform task

Write down in order list of high level tasks to be done

Each high level task becomes a module (function)

• Modules based on "design decisions"

List
Difficult design decisions
Design decisions that are likely to change

Each module should hide a design decision

All ways of decomposing an application are not equal

3/21/02 Doc 10, Coupling slide # 4

Parnas's Criteria

Primary goal of decomposition into modules is reduction of
software cost

Specific goals of module decomposition

3/21/02 Doc 10, Coupling slide # 5

Metrics for quality

Coupling

Strength of interaction between objects in system

Cohesion

Degree to which the tasks performed by a single module are
functionally related

3/21/02 Doc 10, Coupling slide # 6

Coupling

Relationships between Objects

Type of Relations:

Type Relation between
Uses (Object)
Containment (Object)
Inheritance (Class)
Association (Object)

Uses

Object A uses object B if A sends a message to B

Assume that A and B objects of different classes

A is the sender, B is the receiver

Containment

Class A contains class B when A has a field of type B

That is an object of type A will have an object of type B inside it

3/21/02 Doc 10, Coupling slide # 7

Different Ways to Implement Uses

How does the sender access the receiver?

1. Containment

The receiver is a field in the sender

class Sender {
Receiver here;

public void method() {
here.sendAMessage();

}
}

2. Argument of a method

The receiver is an argument in one of the sender's methods

class Sender {
public void method(Receiver here) {

here.sendAMessage();
}

}

3/21/02 Doc 10, Coupling slide # 8

3. Ask someone else

The sender asks someone else to give them the receiver

class Sender {
public void method() {

Receiver here = someoneElse.getReceiver();
here.sendAMessage();

}
}

4. Creation

The sender creates the receiver

class Sender {
public void method() {

Receiver here = new Receiver();
here.sendAMessage();

}
}

5. Global

The receiver is global to the sender

3/21/02 Doc 10, Coupling slide # 9

Heuristics for the Uses Relationship

4.1 Minimize the number of classes with another class
collaborates

Restaurant
Patron

Melon

Steak

Pie

cost()

Restaurant
Patron

Melon

Steak

Pie

Meal

cost()

3/21/02 Doc 10, Coupling slide # 10

4.2 Minimize the number of message sends between a class and
its collaborator

4.3 Minimize the number of different messages a class sends to
another class.

4.4 Minimize the product of the number of methods in a class and
the number of different messages they send.

Which is more complex?

f1() f10() f10()f2()
f3()
f4()
f5()

Class X Class Y Class W Class Z

a()
b()

c()
d()

a()
b()

c()
d()

Class X Class Y Class W Class Z

a()
b()

c()
d()

a()
b()

Class X Class Y Class W

3/21/02 Doc 10, Coupling slide # 11

Decomposable system

One or more of the components of a system have no
interactions or other interrelationships with any of the other
components at the same level of abstraction within the system

A nearly decomposable system

Every component of the system has a direct or indirect
interaction or other interrelationship with every other
component at the same level of abstraction within the same
system

Design Goal

The interaction or other interrelationship between any two
components at the same level of abstraction within the system
be as weak as possible

3/21/02 Doc 10, Coupling slide # 12

Coupling

Measure of the interdependence among modules

"Unnecessary object coupling needlessly decreases the
reusability of the coupled objects"

"Unnecessary object coupling also increases the chances of
system corruption when changes are made to one or more of the
coupled objects"

3/21/02 Doc 10, Coupling slide # 13

Types of Modular Coupling
In order of desirability

Data Coupling (weakest – most desirable)

Control Coupling

Global Data Coupling

Internal Data Coupling(strongest – least desirable)

Content Coupling (Unrated)

3/21/02 Doc 10, Coupling slide # 14

Modular Coupling
Data Coupling

Output from one module is the input to another

Using parameter lists to pass items between routines

Common Object Occurrence:

Object A passes object X to object B

Object X and B are coupled

A change to X's interface may require a change to B

Example

class ObjectBClass{
public void message(ObjectXClass X){

// code goes here
X.doSomethingForMe(Object data);
// more code

}
}

3/21/02 Doc 10, Coupling slide # 15

Modular Coupling
Data Coupling

Major Problem

Object A passes object X to object B

X is a compound object

Object B must extract component object Y out of X

B, X, internal representation of X, and Y are coupled

3/21/02 Doc 10, Coupling slide # 16

Example: Sorting student records, by ID, by Name

How does the SortedList method add() add the new student record object and resort the
list? To do this it needs to access the ID (name) fields of StudentRecord!

class StudentRecord {
Name lastName;
Name firstName;
long ID;

public Name getLastName() { return lastName; }

// etc.
}

SortedList cs535 = new SortedList();
StudentRecord newStudent;
//etc.
cs535.add (newStudent);

3/21/02 Doc 10, Coupling slide # 17

Solution 1 Bad News

Here the add method actually accesses the StudentRecord method to get the ID. What is
wrong with that? Why is this bad news?

class SortedList
{
Object[] sortedElements = new Object[properSize];

public void add(StudentRecord X)
{
// coded not shown
Name a = X.getLastName();
Name b = sortedElements[K].getLastName();
if (a.lessThan(b))

// do something
else

// do something else
}

}

SortList>>add: aStudentRecord
Blah
a := aStudentRecord lastName.
b := sortedElements at: k.
blah

3/21/02 Doc 10, Coupling slide # 18

Solution 2 Send message to object to compare self to another
StudentRecord Object

How is this any better that solution 1? Is it any better? How does it differ?

class SortedList{
Object[] sortedElements = new Object[properSize];

public void add(StudentRecord X) {
// coded not shown
if (X.lessthan(sortedElements[K]))

// do something
else

// do something else
}

}

class StudentRecord{
private Name lastName;
private long ID;

public boolean lessThan(Object compareMe) {
return lastName.lessThan(compareMe.lastName);

}
etc.

}

SortList>>add: aStudentRecord
Blah
aStudentRecord < sortedElements last

ifTrue: [more blah]
ifFalse: [blah blah]

blah

3/21/02 Doc 10, Coupling slide # 19

3/21/02 Doc 10, Coupling slide # 20

Solution 3 Program to an Interface or "required operations"
Notice how the SortedList is no longer coupled to the StudentRecord class. It can be used
to sort any list of objects of the same class than implement Comparable.

interface Comparable {
public boolean lessThan(Object compareMe);
public boolean greaterThan(Object compareMe);
public boolean equal(Object compareMe);

}
class StudentRecord implements Comparable {

private Name lastName;
private long ID;
public boolean lessThan(Object compareMe) {

return lastName.lessThan(((Name)compareMe).lastName);
}

}
class SortedList {

Object[] sortedElements = new Object[properSize];
public void add(Comparable X) {

// coded not shown
if (X.lessthan(sortedElements[K])

// do something
else

// do something else
}

}

SortList>>add: anObject
anObject < sortedElements last

ifTrue: [more blah]
ifFalse: [blah blah]

blah

3/21/02 Doc 10, Coupling slide # 21

Solution 4 Strategy Pattern & Blocks

| sortedStudents |

sortedStudents := SortedCollection sortBlock:
[:x :y | x lastName < y lastName].

blah

sortedStudents
add: roger;
add: pete;
add: sam.

sortedStudents sortBlock: [:x :y | x grade < y grade]

3/21/02 Doc 10, Coupling slide # 22

Solution 4!Strategy Pattern & Function PointersCode is neither legal
C/C++ nor Java. The idea is to pass in a function pointer to the SortList
object, which it uses to compare the objects in the list.

typedef int (*compareFun) (StudentRecord, StudentRecord);
class SortedList {

StudentRecord[] sortedElements =
new StudentRecord[properSize];

 int (*compare) (StudentRecord, StudentRecord);

public setCompare(compairFun newCompare)
{ compare = newCompare; }

public void add(StudentRecord X) {
// coded not shown
if (compare(X, sortedElements[K]))
// code not shown

}
}

int compareID(StudentRecord a, StudentRecord b)
{ // code not shown }

int compareName(StudentRecord a, StudentRecord b)
{ // code not shown }

SortedList myList = new SortedList();
myList.setCompair(compareID);

3/21/02 Doc 10, Coupling slide # 23

Functor Pattern
Functions as Objects

Functors are functions that behave like objects

They serve the role of a function, but can be created, passed as
parameters, and manipulated like objects

A functor is a class with a single member function

Note 1: Functors violate the idea that a class is an abstraction with operations and state.
Beginners should avoid using the Functor pattern, as they can lead to bad habits. The
functor pattern is used here only as a last resort.

Note 2: The Command pattern is similar to the Functor pattern, but contains operations and
state.

3/21/02 Doc 10, Coupling slide # 24

Function Pointers in Java
Comparator in Java 2 (JDK 1.2)

In Java 2, the Comparator interface defines an interface for objects that act like functions
pointers to compare objects.

Methods in Comparator Interface
int compare(Object o1, Object o2)

Returns a negative integer, zero, or a positive integer as the
first argument is less than, equal to, or greater than the second

boolean equals(Object obj)
Indicates whether some other object is "equal to" this
Comparator.

The implementer must ensure that:

sgn(compare(x, y)) == -sgn(compare(y, x)) for all x and y

compare(x, y) must throw an exception if and only if compare(y, x) throws
an exception.)

((compare(x, y)>0) && (compare(y, z)>0)) implies compare(x, z)>0.

x.equals(y) || (x==null && y==null) implies that compare(x, y)==0.

compare(x, y)==0 implies that sgn(compare(x, z))==sgn(compare(y, z)) for
all z.

3/21/02 Doc 10, Coupling slide # 25

Comparator Example

import java.util. Comparator;
class Student {

String name;
int id;
public Student(String newName, int id) {

name = newName;
this.id = id;
}

public String toString() {
return name + ":" + id;
}

}

final class StudentNameComparator implements Comparator {
public int compare(Object leftOp, Object rightOp) {

String leftName = ((Student) leftOp).name;
String rightName = ((Student) rightOp).name;
return leftName.compareTo(rightName);

}
public boolean equals(Object comparator) {

return comparator instanceof StudentNameComparator;
}

}

3/21/02 Doc 10, Coupling slide # 26

//Comparator Example Continued

final class StudentIdComparator implements Comparator {
static final int LESS_THAN = -1;
static final int GREATER_THAN = 1;
static final int EQUAL = 0;

public int compare(Object leftOp, Object rightOp) {
long leftId = ((Student) leftOp).id;
long rightId = ((Student) rightOp).id;
if (leftId < rightId)

return LESS_THAN;
else if (leftId > rightId)

return GREATER_THAN;
else

return EQUAL;
}

public boolean equals(Object comparator) {
return comparator instanceof StudentIdComparator;

}
}

3/21/02 Doc 10, Coupling slide # 27

//Comparator Example Continued
import java.util.*;

public class Test {
public static void main(String args[]) {

Student[] cs596 = { new Student("Li", 1), new Student("Swen", 2),
new Student("Chan", 3) };

//Sort the array
Arrays.sort(cs596, new StudentNameComparator());
for (int k = 0; k < cs596.length; k++)

System.out.print(cs596[k].toString() + ", ");
System.out.println();

List cs596List = new ArrayList();
cs596List.add(new Student("Li", 1));
cs596List.add(new Student("Swen", 2));
cs596List.add(new Student("Chan", 3));
System.out.println("Unsorted list " + cs596List);

//Sort the list
Collections.sort(cs596List, new StudentNameComparator());
System.out.println("Sorted list " + cs596List);

//TreeSets are aways sorted
TreeSet cs596Set = new TreeSet(new StudentNameComparator());
cs596Set.add(new Student("Li", 1));
cs596Set.add(new Student("Swen", 2));
cs596Set.add(new Student("Chan", 3));
System.out.println("Sorted Set " + cs596Set);

}
}

3/21/02 Doc 10, Coupling slide # 28

//Comparator Example Continued
Output

Chan:3, Li:1, Swen:2,
Unsorted list [Li:1, Swen:2, Chan:3]
Sorted list [Chan:3, Li:1, Swen:2]
Sorted Set [Chan:3, Li:1, Swen:2]

3/21/02 Doc 10, Coupling slide # 29

Sorting With Different Keys
import java.util.*;

public class MultipleSorts {
public static void main(String args[]) {

List cs596List = new ArrayList();
cs596List.add(new Student("Li", 1));
cs596List.add(new Student("Swen", 2));
cs596List.add(new Student("Chan", 3));

Collections.sort(cs596List, new StudentNameComparator());
System.out.println("Name Sorted list " + cs596List);

Collections.sort(cs596List, new StudentIdComparator());
System.out.println("Id Sorted list " + cs596List);

TreeSet cs596Set = new TreeSet(new StudentNameComparator());
cs596Set.addAll(cs596List);
System.out.println("Name Sorted Set " + cs596Set);

TreeSet cs596IdSet = new TreeSet(new StudentIdComparator());
cs596IdSet.addAll(cs596List);
System.out.println("Id Sorted Set " + cs596IdSet);

}
}

Output
Name Sorted list [Chan:1, Li:2, Swen:1]
Id Sorted list [Chan:1, Swen:1, Li:2]
Name Sorted Set [Chan:1, Li:2, Swen:1]
Id Sorted Set [Chan:1, Li:2]

3/21/02 Doc 10, Coupling slide # 30

Modular Coupling
Control Coupling

Passing control flags between modules so that one module
controls the sequencing of the processing steps in another
module

Common Object Occurrences:

A sends a message to B

B uses a parameter of the message to decide what to do

class Lamp {
public static final ON = 0;

public void setLamp(int setting) {
if (setting == ON)

//turn light on
else if (setting == 1)

// turn light off
else if (setting == 2)

// blink
}

}

Lamp reading = new Lamp();
reading.setLamp(Lamp.ON);
reading.setLamp)(2);

3/21/02 Doc 10, Coupling slide # 31

Cure:
Decompose the operation into multiple primitive operations

class Lamp {
public void on() {//turn light on }
public void off() {//turn light off }
public void blink() {//blink }

}

Lamp reading = new Lamp();
reading.on();
reading.blink();

3/21/02 Doc 10, Coupling slide # 32

Is this Control Coupling?

BankAccount>>withdrawal: aFloat
balance := balance – aFloat.

What about?

BankAccount>>withdrawal: aFloat
balance < aFloat

ifTrue: [self bounceThisCheck]
ifFalse: [balance := balance – aFloat]

3/21/02 Doc 10, Coupling slide # 33

Control Coupling

Common Object Occurrences:

A sends a message to B

B returns control information to A

Example: Returning error codes

class Test {
public int printFile(File toPrint) {

if (toPrint is corrupted)
return CORRUPTFLAG;

blah blah blah
}

}

Test when = new Test();
int result = when.printFile(popQuiz);
if (result == CORRUPTFLAG)

blah
else if (result == -243)

3/21/02 Doc 10, Coupling slide # 34

Cure: Use exceptions

How does this reduce coupling?

class Test {
public int printFile(File toPrint) throws PrintExeception {

if (toPrint is corrupted)
throws new PrintExeception();

blah blah blah
}

}

try {
Test when = new Test();
when.printFile(popQuiz);

}
catch (PrintException printError) {

do something
}

3/21/02 Doc 10, Coupling slide # 35

Modular Coupling
Global Data Coupling

Two or more modules share the same global data structures

Common Object Occurrence:

A method in one object makes a specific reference to a specific
external object

A method in one object makes a specific reference to a specific
external object, and to one or more specific methods in the
interface to that external object

A component of an object-oriented system has a public interface
which consists of items whose values remain constant throughout
execution, and whose underlying structures/implementations are
hidden

A component of an object-oriented system has a public interface
which consists of items whose values remain constant throughout
execution, and whose underlying structures/implementations are
not hidden

A component of an object-oriented system has a public interface
which consists of items whose values do not remain constant
throughout execution, and whose underlying
structures/implementations are hidden

A component of an object-oriented system has a public interface
which consists of items whose values do not remain constant
throughout execution, and whose underlying
structures/implementations are not hidden

3/21/02 Doc 10, Coupling slide # 36

Internal Data Coupling

One module directly modifies local data of another module

Common Object Occurrence:

C++ Friends

A friend of a class in C++ has complete access to all private members of the class.
This is a clear violation of the information hiding feature of the class. Since the class
must list its friends, the violation is controlled. There are situations (defining the io
operators <<, >>) where the use of friends can not be avoided

3/21/02 Doc 10, Coupling slide # 37

Modular Coupling
Lexical Content Coupling

Some or all of the contents of one module are included in the
contents of another

Common Object Occurrence:

C/C++ header files

Decrease coupling by:

Restrict what goes in header file

C++ header files should contain only class interface
specifications

3/21/02 Doc 10, Coupling slide # 38

Object Coupling

Very little is written about object coupling. For more information see “Managing Class
Coupling: Apply the Principles of Structured Design to Object-Oriented Programming,”
UNIX Review, Vol. 2, No. 1, May/June 1989, pp. 34-40.

Coupling measures the strength of the physical relationships
among the items that comprise an object

Cohesion measures the logical relationship among the items that
comprise an object

Interface coupling is the coupling between an object and all
objects external to it. Interface coupling is the most desirable
form of object coupling. Internal coupling is coupling among the
items that make up an object.

3/21/02 Doc 10, Coupling slide # 39

Object Coupling
Interface Coupling

Interface coupling occurs when one object refers to another
specific object, and the original object makes direct references to
one or more items in the specific object's public interface

Includes module coupling already covered

Weakest form of object coupling, but has wide variation

Sub-topics
Object abstraction decoupling
Selector decoupling
Constructor decoupling
Iterator decoupling

3/21/02 Doc 10, Coupling slide # 40

Object Abstraction Decoupling

Assumptions that one object makes about a category of other
objects are isolated and used as parameters to instantiate the
original object.

Example: List items
C++ templates and Ada’s generics are the constructs Berard is talking about. Making the
LinkedListCell a template removes any type specific code from the LinkedListCell class.
This helps insure that the class can hold any type.

C++ Example
class LinkedListCell {

int cellItem;
LinkedListCell* next;

// code can now use fact that cellItem is an int
if (cellItem == 5) print("We Win");

}

template <class type>
class LinkedListCell#2 {

type cellItem;
LinkedListCell* next;

// code does not know the type, it is just a cell item,
// it becomes an abstraction

}

3/21/02 Doc 10, Coupling slide # 41

Java Example
Object Abstraction Decoupling Java does not support templates. Instead it supports Object
as a root type. Using an Object as a type in the LinkedListCell class has some of the
decoupling that Ada generics or C++ templates achieve. However, it provides only one
category of objects (all of them). This solution that Smalltalk (with no compile time type
checking) also supports. Java interfaces can be used to achieve decoupling in the same
situations as Ada generics or C++ templates.

class LinkedListCellA {
int cellItem;
LinkedListCell next;

if (cellItem == 5) print("We Win");
}

class LinkedListCellB {
Object cellItem;
LinkedListCell next;

if (cellItem.operation1()) print("We Win");
}

3/21/02 Doc 10, Coupling slide # 42

Selector Decoupling

Example: Counter object

class Counter{
int count = 0;

public void increment() { count++; }
public void reset() { count = 0; }
public void display() {

code to display the counter in a slider bar
}

Display of Counter

"display" couples the counter object to a particular output type

The counter class can not be used in other setting due to this
coupling

Better Counter Class
class Counter{

int count = 0;

public void increment() { count++; }
public void reset() { count = 0; }
public int count() {return count;}
public String toString() {return String.valueOf(count);}
}

3/21/02 Doc 10, Coupling slide # 43

Primitive Methods

A primitive method is any method that cannot be implemented
simply, efficiently, and reliably without knowledge of the
underlying implementation of the object

Primitive methods are:

Functionally cohesive, they perform a single specific function

Small, seldom exceed five "lines of code"

A composite method is any method constructed from two or
more primitive methods – sometimes from different objects

Types of Primitive Operations

Selectors (get operations)

Constructors (not the same as class constructors)

Iterators

3/21/02 Doc 10, Coupling slide # 44

Selectors

Selectors are encapsulated operations which return state
information about their encapsulated object and do not alter the
state of their encapsulated object

Replacing

public void display() {
code to display the counter

}

with

public String toString() {return String.valueOf(count);}

is an example of Selector decoupling.

By replacing a composite method (display) with a primitive
method the Counter class is decoupled from the display device

This makes the Counter class far more useful

It also moves the responsibility of displaying the counter
elsewhere

3/21/02 Doc 10, Coupling slide # 45

Constructors

Operations that construct a new, or altered version of an object

Java and C++ both have language constructs called constructors. Berard has in mind a
larger class of operations than those. Often static methods are used as constructors to
create new objects.

Berard’s example illustrating constructor decoupling is extremely vague. The fromString
method below does make it clear what type of parameter is needed to create a new
calendar object. One point to learn from his discussion is the desirability to have well
defined interface to creating objects from primitive objects.

class Calendar {

public void getMonth(from where, or what) { blah }
}

class Calendar {
public static Calendar fromString(String date) { blah}

}

3/21/02 Doc 10, Coupling slide # 46

Primitive Objects

Primitive objects are objects that are both:

• Defined in the standard for the implementation language

This can include standard libraries and standard environments

• Globally known

That is any object that is known in any part of any application
created using the implementation language

Primitive objects don't count in coupling with other objects

"An object that refers to itself and to primitive objects is
considered for all intents and purposes, totally decoupled from
other objects"

The motivation here is that primitive objects are very stable, that is will not change. If they
do not change, then we do not have to be concerned about coupling with them. One
reason to reduce coupling is to make it easier to deal with changes. A second reason to
reduce coupling is to improve reuse. If class A uses class B, which is universally available
to all programs using the language, then class A’s reusability is not affected by using class
B. Berard’s argument has two problems. First, standard libraries do change over time. Look
at the number of deprecated methods in the Java API. Of course, the Java API is very
young. As the language ages, its core API should be more stable. The second problem is
one can delude oneself about a company’s or personal class library as being “standard”
and stable (and hence primitive) when they are not.

3/21/02 Doc 10, Coupling slide # 47

Composite Object

Object conceptually composed of two or more objects

Heterogeneous Composite Object

Object conceptually composed from objects which are not all
conceptually the same

The date class below is composed of three items that are the same type: ints. However,
these ints represent different conceptual entities.

class Date{
int year;
int month;
int day;

}

Homogeneous Composite Object

Object conceptually composed from objects which are all
conceptually the same

list of names - each item is a member of the same general
category of object – a name

Berard’s homogeneous composite objects are basically container objects.

3/21/02 Doc 10, Coupling slide # 48

Iterator

Allows the user to visit all the nodes in a homogeneous composite
object and to perform some user-supplied operation at each node

Both Java and C++ support iterators

3/21/02 Doc 10, Coupling slide # 49

Passive Iterator

Neither Java nor C++ support passive iterators. Smalltalk does support them. In a passive
iterator, you pass a method or function to the composite object, and the object then applies
the method to all elements in the object. Passive iterators in Smalltalk are very powerful.
Passive iterators require very minimal code to use. They require efficient ways to deal with
method/functions as parameters. Only one passive iterator can be active on an object at a
time.

class List {
Object[] listElements = new Object[size];

public void do(Function userOperation) {
for (int k = 0; k < listElements.length(); k++)

userOperation(listElements[k]);
}

}

In Main

List grades = new List();
aFunction = (item){ print(item) };

grades.do (aFunction);

3/21/02 Doc 10, Coupling slide # 50

Active Iterator
Java (Enumeration, Iterator (JDK1.2), ListIterator (JDK1.2), StringCharacterIterator) and
C++ (in STL) use active iterators.

List grades = new List();

Iterator gradeList = grades.iterator();

while (gradeList.hasNext()){
listItem = gradeList.next();
print (listItem);
}

Java Enumeration/Iterator

Methods
Enumeration Iterator ListIterator
hasMoreElements() hasNext() hasNext()
nextElement() next() next()

remove() remove()
nextIndex()
hasPrevious()
previous()
previousIndex()
add()
set()

Iterators go through elements of a collection.

Iterator and ListIterator are fail-fast

If the underlying collection is changed (elements added or removed) by means other than
the iterator, then the next time the iterator is accessed it will throw a
java.util.ConcurrentModificationException

3/21/02 Doc 10, Coupling slide # 51

Iterators and Coupling

Using iterators reduces coupling by hiding the details of traversing through elements of a
collection. If one used the non-iterator method of accessing the elements of collections, it
becomes a lot of work to replace the use of one collection with another. One might want to
replace an array with a binary search tree for better performance.

Array
int[] list

for (int k = 0; k < list.length; k ++)
System.out.println(list[k]);

Vector
Vector list

for (int k =0; k < list.size(); k++)
Sytem.out.println(list.elementAt(k));

Binary Search Tree
BinarySeachTree list

Node current = list.root();
Stack previous = new Stack();
Previous.push(current);

while (current != null)
{
a lot of code here
}

3/21/02 Doc 10, Coupling slide # 52

Java Collection Classes

Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

There are synchronized, unsynchronized, modifiable
unmodifiable versions of each collection/map

One can set the modifiable and synchronized property separately

What about Arrays?

One of Java's defects is not making an Array class and making it part of the collection class
hierarchy. As a result one has to treat arrays differently from all other collections. Since
arrays are very common, the effectiveness of the collection class hierarchy is greatly
lessened. However, since most programmers have not used a uniform collection class
structure they do not realize how much easier life can be.

One can convert an array of objects to a list

String[] example = new String[10];
List listBackedByArray = Arrays.asList(example);

Changes to the array(list) are reflected in the list(array)

3/21/02 Doc 10, Coupling slide # 53

Less Coupling with Iterators

Collection list;

Iterator elements = list.iterator();

while (elements.hasNext()) {
System.out.println(elements.next());

}

In this code list could be any type of collection, so is more flexible.
It is not coupled to a particular type of collection.

3/21/02 Doc 10, Coupling slide # 54

Inside Internal Object Coupling

Coupling between state and operations of an object

The big issue: Accessing state

Changing the structure of the state of an object requires changing
all operations that access the state including operations in
subclasses

Solution: Access state via access operations

C++ implementation
Provide private functions to access and change each data
member

Simple Cases:

One function to access the value of the date member

One function to change the value of the data member

Only these two functions can access the data member

When an object is used as state, then providing access methods for that object can be far
more complex. Assume that the state object itself has 10 methods. Now we may need to
provide 12 access methods not just two. If a class have three such state objects, then it
may need far too many access methods to be practical.

3/21/02 Doc 10, Coupling slide # 55

Accessing State
C++ Example

class Counter{
public:

void increment(void);

private:
int value;

void setValue(int newValue);
int getValue(void);

};

void Counter::increment(void) //Increase counter by one {
setValue(getValue() + 1);

};

void Counter::setValue(int newValue) {
value = newValue;

};

int Counter::getValue {
return value;

};

3/21/02 Doc 10, Coupling slide # 56

Outside Internal Coupling from Underneath

Coupling between a class and subclass involving private state
and private operations

Major Issues:

• Access to inherited state

Direct access to inherited state

See inside internal object coupling

Access via operations

Inherited operations may not be sufficient set of operations to
access state for subclass

• Unwanted Inheritance

Parent class may have operations and state not needed by
subclass

Unwanted inheritance makes the subclass unnecessarily
complex. This reduces understandability and reliability.

3/21/02 Doc 10, Coupling slide # 57

Outside Internal Coupling from the Side

Class A accesses private state or private operations of class B

Class A and B are not related via inheritance

Main causes:

Using nonobject-oriented languages

Special language "features"

C++ friends

Donald Knuth

"First create a solution using sound software engineering
techniques, then if needed, introduce small violations of good
software engineering principles for efficiency's sake."

