
3/20/01 Doc 14 Refactoring Intro slide# 1

CS 683 Emerging Technologies: Embracing Change
Spring Semester, 2001

Doc 14 Refactoring Intro
Contents

Refactoring Intro..2
The Broken Window ...3
The Perfect Lawn ...4
Familiarity verse Comfort..5
Refactoring...6
Sample Refactoring: Extract Method ..7

Motivation..7
Mechanics ...8
Example ..10

Simplifying Conditional Expressions ...14
Decompose Conditional ..14
Consolidate Conditional Expression ..15
Consolidate Duplicate Conditional Fragments ...16
Remove Control Flag...18
Replace Nested Conditional with Guard Clauses.......................................20
Replace Conditional with Polymorphism..21
Introduce Null Object ...23
Introduce Assertion..24

References

Refactoring: Improving the Design of Existing Code, Fowler, 1999, pp. 110-116,
237-270

The Pragmatic Programmer, Hunt & Thomas, Addison Wesley Longman, 2000

Quality Software Management Vol. 4 Anticipating Change, Gerald Weinberg,
Dorset House Publishing, 1997

Copyright©, All rights reserved. 2001 SDSU & Roger Whitney, 5500 Campanile Drive,
San Diego, CA 92182-7700 USA. OpenContent
(http://www.opencontent.org/opl.shtml) license defines the copyright on this document.

3/20/01 Doc 14 Refactoring Intro slide# 2

Refactoring Intro

We have code that looks like:

at: anInteger put: anObject
(smallKey ~= largeKey)

ifTrue:
[(anInteger < smallKey)

ifTrue: [self atLeftTree: anInteger put: anObject]
ifFalse: [(smallKey = anInteger)

ifTrue: [smallValue := anObject]
ifFalse: [(anInteger < largeKey)

ifTrue: [self atMiddleTree: anInteger put: anObject]
ifFalse: [(largeKey = anInteger)

ifTrue: [largeValue := anObject]
ifFalse: [(largeKey < anInteger)

ifTrue: [self atRightTree: anInteger put: anObject]]]]]]
ifFalse:

[self addNewKey: anInteger with: anObject].

Now what?

3/20/01 Doc 14 Refactoring Intro slide# 3

The Broken Window1

In inner cities some buildings are:

• Beautiful and clean
• Graffiti filled, broken rotting hulks

Clean inhabited buildings can quickly become abandoned
derelicts

The trigger mechanism is:

• A broken window

If one broken window is left unrepaired for a length of time

• Inhabitants get a sense of abandonment
• More windows break
• Graffiti appears
• Pipes break
• The damage goes beyond the owner's desire to fix

Don't live with Broken Widows in your code

1 Pragmatic Programmer, pp. 4-5

3/20/01 Doc 14 Refactoring Intro slide# 4

The Perfect Lawn

A visitor to an Irish castle asked the groundskeeper the secret
of the beautiful lawn at the castle

The answer was:

• Just mow the lawn every third day for a hundred years

Spending a little time frequently

• Is much less work that big concentrated efforts
• Produces better results in the long run

So frequently spend time cleaning your code

3/20/01 Doc 14 Refactoring Intro slide# 5

Familiarity verse Comfort

Why don't more programmers/companies continually:

• Write unit tests
• Refactor
• Work on improving programming skills

Familiarity is always more powerful than comfort.

-- Virginia Satir

3/20/01 Doc 14 Refactoring Intro slide# 6

Refactoring

Refactoring is the modifying existing code without adding
functionality

Changing existing code is dangerous

• Changes can break existing code

To avoid breaking code while refactoring:

• Need tests for the code
• Proceed in small steps

3/20/01 Doc 14 Refactoring Intro slide# 7

Sample Refactoring: Extract Method2

You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the
purpose of the method

Motivation

Short methods:

• Increase possible reuse
• Makes high level methods easier to read
• Makes easier to override methods

2 Refactoring Text, pp. 110-116

3/20/01 Doc 14 Refactoring Intro slide# 8

Mechanics

• Create a new method - the target method

Name the target method after the intention of the method

With short code only extract if the new method name is
better than the code at revealing the code's intention

• Copy the extracted code from the source method into the
target method

• Scan extracted code for references to local variables
(temporary variables or parameters) of the source method

• If a temporary variable is used only in the extracted code
declare it local in the target method

• If a parameter of the source method is used in the extracted
code, pass the parameter to the target method

3/20/01 Doc 14 Refactoring Intro slide# 9

Mechanics - Continued

• See if the extracted code modifies any of the local variables
of the source method

If only one variable is modified, then try to return the
modified value

If more than one variable is modified, then the extracted
code must be modified before it can be extracted

Split Temporary Variables or Replace Temp with Query
may help

• Compile when you have dealt with all the local variables

• Replace the extracted code in source code with a call to the
target method

• Compile and test

3/20/01 Doc 14 Refactoring Intro slide# 10

Example3

No Local Variables

Note I will use Fowler's convention of starting instance
variables with "_" even though one can not do this is Squeak.

printOwing
| outstanding |

outstanding := 0.0.
Transcript

show: '********************';
cr;
show: '***Customer Owes***';
cr;
show: '********************';
cr.

outstanding := _orders inject: 0 into: [:sum :each | sum + each].

Transcript
show: 'Name: ';
show: _name;
cr;
show: 'Amount: ';
show: outstanding;
cr.

3 Example code is Squeak version of Fowler's Java example

3/20/01 Doc 14 Refactoring Intro slide# 11

Extracting the banner code we get:

printOwing
| outstanding |

outstanding := 0.0.
self printBanner.

outstanding := _orders inject: 0 into: [:sum :each | sum + each].

Transcript
show: 'Name: ';
show: _name;
cr;
show: 'Amount: ';
show: outstanding;
cr.

printBanner
Transcript

show: '********************';
cr;
show: '***Customer Owes***';
cr;
show: '********************';
cr

3/20/01 Doc 14 Refactoring Intro slide# 12

Examples: Using Local Variables

We can extract printDetails: to get

printOwing
| outstanding |
self printBanner.
outstanding := _orders inject: 0 into: [:sum :each | sum + each].
self printDetails: outstanding

printDetails: aNumber
Transcript

show: 'Name: ';
show: _name;
cr;
show: 'Amount: ';
show: aNumber;
cr.

Then we can extract outstanding to get:

printOwing
self

printBanner;
printDetails: (self outstanding)

outstanding
^_orders inject: 0 into: [:sum :each | sum + each]

The text stops here, but the code could use more work

3/20/01 Doc 14 Refactoring Intro slide# 13

Using Add Parameter (275)

printBanner
Transcript

show: '********************';
cr;
show: '***Customer Owes***';
cr;
show: '********************';
cr

becomes:

printBannerOn: aStream
aStream

show: '********************';
cr;
show: '***Customer Owes***';
cr;
show: '********************';
cr

Similarly we do printDetails and printOwing

printOwingOn: aStream
self printBannerOn: aStream.
self

printDetails: (self outstanding)
on: aStream

Perhaps this should be called Replace Constant with
Parameter

3/20/01 Doc 14 Refactoring Intro slide# 14

Simplifying Conditional Expressions
Decompose Conditional4

You have a complicated conditional (if-then-else) statement

Extract methods from the condition, then part and else parts

Example5

(date before: SummerStart) | (date after: SummerEnd)
ifTrue:[charge := quantity * _winterRate + _winterServiceCharge]
ifFalse:[charge := quantity + _summerRate]

becomes

(self notSummer: date)
ifTrue: [charge := self winterCharge: quantity]
ifFalse: [charge := self summerCharge: quantity]

or the more Smalltalk like:

charge := (self notSummer: date)
ifTrue: [self winterCharge: quantity]
ifFalse: [self summerCharge: quantity]

Each method (notSummer, winterCharge, summerCharge)
should be extracted and tested one at a time

4 Refactoring Text, pp. 238-239
5 Recall that "_" indicates an instance variable

3/20/01 Doc 14 Refactoring Intro slide# 15

Consolidate Conditional Expression6

You have a sequence of conditional tests with the same result

Combine them into a single conditional expression and extract
it

Example

disabilityAmount
_senority < 2 ifTrue: [^0].
_monthDisabled > 12 ifTrue: [^0].
self isPartTime ifTrue: [^0].
"compute the disabilty amount here"

becomes

disabilityAmount
(_senority < 2) | (_monthDisabled > 12) | (self isPartTime) ifTrue: [^0].
"compute the disabilty amount here"

becomes:

disabilityAmount
self isNotEliableForDisability ifTrue: [^0].
"compute the disabilty amount here"

6 Refactoring Text, pp. 240-242

3/20/01 Doc 14 Refactoring Intro slide# 16

Consolidate Duplicate Conditional Fragments7

The same fragment of code is in all branches of a conditional
expression

Move it outside of the expression

Example

self isSpecialDeal
ifTrue:

[total := price * 0.95.
self send]

ifFalse:
[total := price * 0.98.
self send]

Consolidating we get:

self isSpecialDeal
ifTrue:[total := price * 0.95]
ifFalse:[total := price * 0.98].

self send

A more Smalltalk like version:

total := self isSpecialDeal
ifTrue:[price * 0.95]
ifFalse:[price * 0.98].

self send

7 Refactoring Text, pp. 243-244

3/20/01 Doc 14 Refactoring Intro slide# 17

Example continued

The text stops here, but the code could use more work

Use Introduce Explaining Variable (124) to improve readability

discountRate := self isSpecialDeal
ifTrue:[0.95]
ifFalse:[0.98].

total := price * discountRate.
self send

Using Replace Temp with Query (120) we get:

total := price * self discountRate.
self send

Where we have

discountRate
^self isSpecialDeal

ifTrue:[0.95]
ifFalse:[0.98]

In Java or C++ we could use Replace Magic Number with
Symbolic Constant (204) on the 0.95 and 0.98 to improve
readability

In Smalltalk we can use Introduce Explaining Variable (124) or
Constant Method (Beck)

3/20/01 Doc 14 Refactoring Intro slide# 18

Remove Control Flag8

You have a variable that is acting as a control flag for a series
of boolean expressions

Use a break or return instead

8 Refactoring Text, pp. 245-249

3/20/01 Doc 14 Refactoring Intro slide# 19

Example9

checkSecurity: people
| found |
found := false.
1 to: people size do:

[:index |
found ifFalse:

[((people at: index) = 'Don') ifTrue:
[self sendAlert().
found := true].

((people at: index) = 'John') ifTrue:
[self sendAlert().
found := true]]]

Becomes:

checkSecurity: people
people containsMiscreant ifTrue:[self sendAlert()]

containsMiscreant
1 to: self size do:

[:index |
((self at: index) = 'Don') ifTrue: [^true].
((self at: index) = 'John') ifTrue: [^true]].

^false

In Squeak the latter becomes:

containsMiscreant
^self anySatisfy: [:each | (each = 'Don') | (each = 'John')]

9 John and Don happen to be the first names of the authors of the Refactoring Browser. Both are excellent
Smalltalk programmers. I do not know why Fowler uses those names as examples of miscreants :)

3/20/01 Doc 14 Refactoring Intro slide# 20

Replace Nested Conditional with Guard Clauses10

A method has conditional behavior that does not make clear
the normal path of execution

Use guard clauses for all the special cases

Example

payAmount
| result |
_isDead

ifTrue: [result := self deadAmount]
ifFalse:

[_isSeparated
ifTrue:[result := self separatedAmount]
ifFalse:

[_isRetired
ifTrue:[result := self retiredAmount]
ifFalse:[result := self normalPayAmount]]].

^ result

becomes

payAmount
_isDead ifTrue: [^self deadAmount].
_isSeparated ifTrue:[^self separatedAmount].
_isRetired ifTrue:[^self retiredAmount].
^self normalPayAmount.

10 Refactoring Text, pp. 250-254

3/20/01 Doc 14 Refactoring Intro slide# 21

Replace Conditional with Polymorphism11

You have a conditional that chooses different behavior
depending on the type of an object

Move each leg of the conditional to an overriding method in a
subclass. Make the original method abstract

11 Refactoring Text, pp. 255-259

3/20/01 Doc 14 Refactoring Intro slide# 22

Example

Employee>>payAmount
_type = Employee engineer ifTrue:[^ self _monthlySalary].
_type = Employee manager ifTrue:[^ self _monthlySalary * 2].
_type = Employee instructor ifTrue:[^ self _monthlySalary/2].
self error: 'Invalid Employee'

becomes:

• Create an EmployeeType class
• Create Engineer, Manager & Instructor subclasses of

EmployeeType

Employee>>payAmount
^_type payAmount: self

EmployeeType>>payAmount: anEmployee
self subclassResponsibility

Engineer>>payAmount: anEmployee
^anEmployee monthlySalary

Manager>>payAmount: anEmployee
^anEmployee monthlySalary * 2

Instructor>>payAmount: anEmployee
^anEmployee monthlySalary/ 2

3/20/01 Doc 14 Refactoring Intro slide# 23

Introduce Null Object12

You have repeated checks for a null value

Replace the null value with a null object

Example

customer isNil
ifTrue: [plan := BillingPlan basic]
ifFalse: [plan := customer plan]

becomes:

• Create NullCustomer subclass of Customer with:

NullCustomer>>plan
^BillingPlan basic

• Make sure that each customer variable has either a real
customer or a NullCustomer

Now the code is:

plan := customer plan

• Often one makes a Null Object a singleton

12 Refactoring Text, pp. 260-266

3/20/01 Doc 14 Refactoring Intro slide# 24

Introduce Assertion13

A section of code assumes something about the state of the
program

Make the assumption explicit with an assertion

Example

getExpenseLimit
"Should have either expense limit or a primary project"
^_expenseLimit isNil

ifTrue:[_expenseLimit]
ifFalse:[_primaryProject memberExpenseLimit]

Becomes:

getExpenseLimit
self assert: [_expenseLimit isNotNil | primaryProject isNotNil].
^_expenseLimit isNil

ifTrue:[_expenseLimit]
ifFalse:[_primaryProject memberExpenseLimit]

Recall that $_ is used to indicate an instance variable
(_primaryProject)

Squeak does have an assert: method in Object

13 Refactoring Text, pp. 267-270

