
2/13/01 Doc 6, Classes slide # 1

CS 683 Emerging Technologies: Embracing Change
Spring Semester, 2001

Doc 6 Classes
Contents

Classes...2
Creating Classes ..5

Creating New Class Category ..5
Adding a Class..7
Adding a Method Category...8
Adding a Method...10

Sample Class..11
Inheritance ..14

Self, Super ..16
Recursion..22
Implicit Return Values ..23
Initializing Instance Variables...24
Class Variables...31
printString..33
Abstract Classes...36
Interfaces ..37
Some Practical Matters ..39

Printing Source Code..39
Exchanging Source Code...40

Exercises ..47

References

CS 497 Object-Oriented Programming & Design, Lecture notes, Ralph Johnson, Department
of Computer Science, UIUC, http://st-www.cs.uiuc.edu/users/cs497/lectures.html

Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall, 1997

Reading

Squeak: Object-Oriented Design with Multimedia Applications, Guzdial, Chapter 3

Copyright ©, All rights reserved. 2001 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

2/13/01 Doc 6, Classes slide # 2

Classes

Object are instances of a class

A Class defines the behavior of its objects

A Smalltalk class has
Methods
Variables

Smalltalk supports only single inheritance

Types of Methods

Instance methods
Sent to instances of Classes

Class methods
Sent to Classes
Similar to static methods in Java/C++

All methods are public

Methods considered private are placed in the method
category called "private"

All methods return a value

2/13/01 Doc 6, Classes slide # 3

Types of Variables

Named Instance Variable
Like protected C++ data member (protected Java field)
Accessible by

Instances (objects) of the class
Instances of subclasses

Class Variable
Like protected static C++ data member
Accessible by

The class and subclasses
Instances of the class and instance of subclasses

Class Instance Variable
No C++ equivalent
Accessible only by the class

Pool Variable
No C++ equivalent
Accessible by class and instances
Can be shared by other class
A bit complex, and very rare

Indexed Instance Variable
Used for Arrays
Most programmers never have add these to their classes

2/13/01 Doc 6, Classes slide # 4

Pseudo-Variables

self
Similar to "this" in C++/Java

super
Similar "super" in C++/Java

Called pseudo-variables because:

They do change value
You can not assign values to them

2/13/01 Doc 6, Classes slide # 5

Creating Classes

One uses the Squeak browser to create new classes and modify existing classes.
Squeak does not keep separate files for each class. The browser with the image file
and the changes file handles storing the code. The browser acts like an IDE, compiler,
source control management system and searchable database for Smalltalk code.
After a while one actually gets so used to interacting with code via the browser that
one stops printing code on paper.

Normally one creates a new class category to keep your classes separate from the
rest of the classes in Squeak. So first we need create a new category. Given the
amount of code in Squeak, it is very useful to select meaningful names for your
categories and classes.

Creating New Class Category

Get the context menu in the class category pane of the browser. You can do this as
done below by clicking on the top of the scrollbar of the class category pane. You can
also do this buy clicking the yellow button in the class category pane. The yellow
button maps to option-click on a Mac, right-click on a 2-button PC mouse, middle-click
on a 3-button PC or Unix mouse.

2/13/01 Doc 6, Classes slide # 6
In the menu select "add item"

A dialog window will appear. Type in the name of the category in the dialog. You
should follow the convention of using hyphenated names. The first part of the name is
a major category, the second part the name being a subcategory. Don't worry about
getting write the first time. You can change the name later if/when you think of a better
name.

When you click on the Accept button the new category will be added to the class
category pane. If an existing category was selected when you started, the new
category is added above the selected category. Otherwise the category is added at
the end of the pane. When you are done, in the bottom pane of the browser you will
see a template for creating a new class like:

Object subclass: #NameOfClass
instanceVariableNames: 'instVarName1 instVarName2'
classVariableNames: 'ClassVarName1 ClassVarName2'
poolDictionaries: ''
category: 'Whitney-Examples'

2/13/01 Doc 6, Classes slide # 7

Adding a Class

To create a class use the System browser to

• Create/Select the class category for the class
• Edit the class template in the bottom pane of the browser
• Accept (or save) the changes to the template

Use the accept item in the context menu of the text pane or
Alt-s on PC or command-s on Mac saves the changes

Here is the class definition for a class with
Name Counter
Parent class of Object
One instance variable named count

Object subclass: #Counter
instanceVariableNames: 'count '
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

Here is a class definition with multiple variables

Object subclass: #BankAccount
instanceVariableNames: ' name balance history id '
classVariableNames: ' InterestRate'
poolDictionaries: ''
category: 'Whitney-Examples'

2/13/01 Doc 6, Classes slide # 8

Adding a Method Category

Methods of classes are organized by categories. Like categories of classes the names
of the method categories are important. The categories are here to help programmers
handle and understand code. Pick meaningful names for categories. When possible
use commonly used categories. Explore the system to find out the common
categories.

To add a new method category first get the context menu in the method category
pane of the browser

In the menu select "new catetory…"

You get another menu. Select "new…" unless the name you wish to use is already
listed.

2/13/01 Doc 6, Classes slide # 9
This gives you a dialog. Enter the name of your category.

After you accept the new category, it is added to the category pane. There will be a
method template in the bottom pane of the browser.

2/13/01 Doc 6, Classes slide # 10

Adding a Method

When you select a method category, the bottom pane of the browser shows the
outline for a method. Replace the outline with the text for the method and then accept
the changes.

2/13/01 Doc 6, Classes slide # 11

Sample Class
Counter

Here is a simple class that increase or decrease a count

Object subclass: #Counter
instanceVariableNames: 'count '
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

Instance Methods

Category: access

count
↑count

decrease
count ifNil: [count := 0].
count := count - 1

increase
count ifNil: [count := 0].
count := count + 1

The above lists three different unary methods. The contents of the methods are all
indented. So name of the method is left justified and indicates the start of a new
method.

2/13/01 Doc 6, Classes slide # 12

Sample use of the Counter Class

| test |
test := Counter new.
test

increase;
increase.

Transcript
open;
show: test count;
cr;
show: test

Output in Transcript
2
a Counter

Comment

new is the default message to send to a class to create an object. The method is
defined in a parent class. It is not a constructor, just a class method.

2/13/01 Doc 6, Classes slide # 13

Some Problems with Counter Class

• Instance variable count is not initialized

Every time count used it is checked to see if it is nil

• Printing a Counter object does not display anything useful

We need the use of super to improve our Counter class. So
we will cover inheritance, super and self.

2/13/01 Doc 6, Classes slide # 14

Inheritance

A class can be extended or subclassed

The class that is extended is a superclass

Term Equivalent Terms
superclass parent class, base class
subclass child class, derived class

The child class inherits the methods and variables of its
parent class

Example
Object subclass: #Counter

instanceVariableNames: 'count '
classVariableNames: ''
poolDictionaries: ''

| child |
child := Counter new. "new - inherited class method"
child printString "printString -inherited instance method

2/13/01 Doc 6, Classes slide # 15

Inheritance and Name Clashes

Subclass can implement methods with same name as parent

Some people call this overloading the method

When message is sent to instance of the subclass, the
subclass method is used

Subclass can not declare instance or Class variables with the
same name as variables defined in superclasses

2/13/01 Doc 6, Classes slide # 16

Self, Super
The Rules

self
Refers to the receiver of the message (current object)

Methods referenced through self are found by:

Searching the class hierarchy starting with the class of
receiver

super
Refers to the receiver of the message (current object)

Methods referenced through super are found by:

Searching the class hierarchy starting the superclass of
the class containing the method that references super

Self, Super Example

Three classes to study self, super

Object subclass: #Parent
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

Instance Methods

name
↑'Parent'

2/13/01 Doc 6, Classes slide # 17

Self, Super Example - Continued

Parent subclass: #Child
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

Instance Methods

name
↑'Child'

returnSelf
↑self

returnSuper
↑super

selfName
↑self name

superName
↑super name

Child subclass: #Grandchild
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

Instance Methods

name
↑'Grandchild'

2/13/01 Doc 6, Classes slide # 18

Self, Super Example - Continued

Test Program

| grandchild | Output In Transcript
grandchild := Grandchild new.
Transcript

show: grandchild name; Grandchild
cr;
show: grandchild selfName; Grandchild
cr;
show: grandchild superName; Parent
cr;
show: grandchild returnSelf; a Grandchild
cr;
show: grandchild returnSuper a Grandchild

2/13/01 Doc 6, Classes slide # 19

Self, Super Example - Continued
How does this Work?

grandchild selfName

receiver is grandchild object

Code in selfName method is ↑self name

To find the method self name start search in Grandchild class

grandchild superName

receiver is grandchild object

Code in superName method is ↑super name

superName is implemented in Child class

To find the method self name start search in the superclass of
Child

2/13/01 Doc 6, Classes slide # 20

Why Super

Super is used when:

The child class extends the behavior of the inherited method

That is:

• Child class inherits a method, call it foo
• Child class implements a with the same name
• Child class needs to access the inherited method

In this case super is needed access the inherited method

2/13/01 Doc 6, Classes slide # 21

Why doesn't super refer to parent class of the receiver?

Object subclass: #Parent

name
↑'Parent'

Parent subclass: #Child

name
↑super name , 'Child'

Child subclass: #Grandchild

"No methods in Grandchild"

Sample Program
| trouble |
trouble := Grandchild new.
trouble name.

Assume that super did refer to the parent class of the receiver. Sending the message
"name" to trouble would call the code "super name , 'Child' ". The super would refer to
the parent class of the receiver. Since the receiver is a Grandchild object, "super
name" would refer to the "name" method in the Parent class. Hence the method will
call itself with no way to end.

2/13/01 Doc 6, Classes slide # 22

Recursion

Smalltalk supports recursion

Here is the factorial method from the Integer class:

factorial
"Answer the factorial of the receiver."

self = 0 ifTrue: [↑ 1].
self > 0 ifTrue: [↑ self * (self - 1) factorial].
self error: 'Not valid for negative integers'

2/13/01 Doc 6, Classes slide # 23

Implicit Return Values

If a method does not explicitly return a value, self is returned

Hence a method like:

decrease
count ifNil: [count := 0].
count := count - 1

Is really:

decrease
count ifNil: [count := 0].
count := count - 1.
↑self

Style Issue - When to explicitly return?

Only explicitly return a value from a method when the intent of the method is to return
a value. An explicit return indicates to other programmers that the intent of the method
is to compute some return value. The intent of the decrease method is to change the
state of the receiver. Hence it should not have a value explicitly returned.

2/13/01 Doc 6, Classes slide # 24

Initializing Instance Variables

If the instance variables always start at same value:

• Create in instance method to initialize them
• Implement class method "new" to initialize the object

Object subclass: #Counter
instanceVariableNames: 'count '
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

Instance Methods

Category: initialize

initialize
count := 0

Category: access

count
↑count

decrease
count := count - 1

increase
count := count + 1

Class Methods

Category: instance creation

new
↑super new initialize

2/13/01 Doc 6, Classes slide # 25

Comments

To add a class method to a class
• Click on the class pane/button in the browser and
• Follow the same steps for adding an instance method

2/13/01 Doc 6, Classes slide # 26

Example - Instance Creation with Parameters

Object subclass: #Counter
instanceVariableNames: 'count '
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

Instance Methods

Category: initialize

setCount: anInteger
count := anInteger

Category: access

count
↑count

decrease
count := count - 1

increase
count := count + 1

2/13/01 Doc 6, Classes slide # 27

Example - Instance Creation with Parameters Continued

Class Methods

Category: instance creation

new
↑self count: 0

count: anInteger
↑super new setCount: anInteger

Category: examples

example
"Counter example"

| a |
a := Counter new.
a

increase;
increase.

↑a count

2/13/01 Doc 6, Classes slide # 28

Class Methods that Create Instances
Some Guidelines1

Smalltalk does not have constructors like C++/Java

Use class methods to create instances

Place these class methods in "instance creation" category

Initial State of Instances

Create objects in some well-formed state

Class creation methods should:

Have parameters for initial values of instance variables or

Set default values for instance variables

Provide an instance method that:

Sets the initial values of instance variables

Place method in "initialize" or "initialize - release" category

Use the name setVariable1: value variable2: …

1 See Beck 1997, Constructor Method and Constructor Parameter Method patterns, pp. 21-24 and Johnson's
class notes on Smalltalk Coding Standards

2/13/01 Doc 6, Classes slide # 29

Beck's First Rule of Good Style2

"In a program written with good style,
everything is said once and only once"

Some violations of the rule:

• Methods with the same logic
• Classes with same the same methods
• Systems with similar classes

Example
new

↑self count: 0

count: anInteger
↑super new setCount: anInteger

Not

new
↑super new setCount: 0

count: anInteger
↑super new setCount: anInteger

If the logic of creating a new instance changes, the first version only has one place to
change.

2 See Beck 1997, page 6

2/13/01 Doc 6, Classes slide # 30

Providing Examples in Class Methods

A common Smalltalk practice is to provide

• Class method(s) implementing example use of the class

• Comment in the method to execute the example

Place such example methods in "example(s)" category

Category: examples

example
"Counter example"

| a |
a := Counter new.
a

increase;
increase.

↑a count

2/13/01 Doc 6, Classes slide # 31

Class Variables

An example showing the use of class variables

Object subclass: #BankAccount
instanceVariableNames: 'name balance '
classVariableNames: 'InterestRate '
poolDictionaries: ''
category: 'Whitney-Examples'

Instance Methods
Category: accessing

monthlyInterest
↑balance * (InterestRate / 12)

Category: initialize

setName: aString balance: aFloat
name := aString.
balance := aFloat

Class Methods
Category: initialize-release

initialize
"BankAccount initialize"

InterestRate := 0.065

Category: instance creation

name: aString balance: aFloat
↑self new

setName: aString
balance: aFloat

2/13/01 Doc 6, Classes slide # 32

Class Variables - Comments

Class variables start with an uppercase letter

Both instance and class methods can access class variables

Initializing Class Variables

Use a class method called "initialize"

System calls this method when loading classes

Provide a comment that executes the method

2/13/01 Doc 6, Classes slide # 33

printString

Similar to toString in Java

Standard method that returns text description of an object

Used by Transcript, print it and other tools to display objects

Object implements printString

printString calls printOn: to produce the text description

Implement printOn: in to replace default printString behavior

2/13/01 Doc 6, Classes slide # 34

printString Example

Object subclass: #Counter
instanceVariableNames: 'count ' "parts left out"

Instance Methods
Category: initialize

initialize
count := 0

Category: access

count
↑count

decrease
count ifNil: [count := 0].
count := count - 1

increase
count ifNil: [count := 0].
count := count + 1

Category: printing

printOn: aStream
aStream

nextPutAll: 'Counter(';
nextPutAll: count printString;
nextPutAll: ')'

Class Methods
Category: instance creation

new
↑super new initialize

2/13/01 Doc 6, Classes slide # 35

PrintString Example - Continued

The expression:

Counter new

When executed with "print it" displays:

Counter(0)

Implementing printOn:

The argument to printOn: is a WriteStream on a string

Important methods on a WriteStream

nextPut: aCharacter
Add a character to the stream

nextPutAll: aString
Add a string to the stream

cr
tab
crtab
space

Add given whitespace character(s) to the stream

One must add only characters & strings to the argument of
printOn:

2/13/01 Doc 6, Classes slide # 36

Abstract Classes

Abstract class
Defines a common interface for subclasses

Instances are not allowed

Abstract method
Methods declared but not implemented in abstract class

Abstract methods in Smalltalk
Indicated by method body of "self subclassResponsibility"

Raise an exception if executed

Object subclass: #SampleAbstractClass
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

methodDeclaredButNotImplemented: anArgument
self subclassResponsibility

2/13/01 Doc 6, Classes slide # 37

Interfaces

Squeak image does not support interfaces as it stands

SmallInterfaces

Class library for Squeak that supports interfaces

Useful in
Indicating protocol required by parameters
Design process

Available at:
http://wiki.cs.uiuc.edu/VisualWorks/SmallInterfaces

2/13/01 Doc 6, Classes slide # 38

shouldNotImplement

Sometimes a class inherits an inappropriate method

Example

SortedCollection inherits at:put:

Elements in SortedCollection are in sorted order

Placing an element at a specified location is inappropriate

To indicate that a method should not be use in a class:

Place "self shouldNotImplement" in the method body

SomeOtherClass subclass: #SomeClass
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

methodDeclaredInParentButDoesNotMakeSenseHere: anArgument
self shouldNotImplement

2/13/01 Doc 6, Classes slide # 39

Some Practical Matters
Printing Source Code

printOut
Menu item in menu of system browser's top four panes

Produces html file of the selected contents

Use a Web browser to print the file

Dandelion
Produces java doc like pages for Squeak code

Rational Rose support
Converts Squeak classes to UML via Petal files

Written in Squeak

Available at:
http://www.mars.dti.ne.jp/~umejava/smalltalk/stClasses/d
andelion/index.html

2/13/01 Doc 6, Classes slide # 40

Exchanging Source Code

Squeak stores all your source code in one file

How to exchange source code with other people?

Use either:
• Fileouts
• Change sets

2/13/01 Doc 6, Classes slide # 41

Filing Source code Out & In

Source code can be filed out to a separate file

The file ends in .st

The file can be filed into another image

To File out Code

Select the fileout menu item in the context menu in any of the
top four panes in the System Browser.

This will produce a file ending in .st in the same directory as
image.

2/13/01 Doc 6, Classes slide # 42

To File in Code

First open the Transcript window. Any errors that occur while filing in code are written
to the Transcript. This happens only if the Transcript is open.

Open the file list tool. This is done by selecting the item "file list" in the open menu.

The upper left pane of the file list tool navigates among volumes and directories. The
upper right pane lists contents of directories. Select a .st file in the upper right pane.

2/13/01 Doc 6, Classes slide # 43

Get the context menu in the upper right pane

Select the menu item "fileIn" or "file into new change set".

2/13/01 Doc 6, Classes slide # 44

Change Sets

Change set
• All the changes made while in a project
• Contains changes made in any class
• More useful than fileouts

The file set initial has the same name as the project.

The default names for projects (unnamed) is not useful

Give your projects and change sets meaningful names

2/13/01 Doc 6, Classes slide # 45

To File out a Change Set

Select the "changes…" item in the world menu. The changes menu looks like:

The "file out current change set" item does just that. It produces a file ending in .cs.
The simple change sorter and the dual change sorter allow you to view and edit the
change set.

To File in a Change Set

Follow the same directions for filing in a .st file

2/13/01 Doc 6, Classes slide # 46

Classes Creation via Message

Object subclass: #Counter
instanceVariableNames: 'count '
classVariableNames: ''
poolDictionaries: ''
category: 'Whitney-Examples'

Give yourself bonus points if you noticed that the template to create a new class is
actually a keyword message sent to the parent class. The Smalltalk class system is
implemented in Smalltalk. As a result one can implement multiple inheritance, private
methods, etc in Smalltalk. This is done by changing classes in the system, not by
changing the compiler.

2/13/01 Doc 6, Classes slide # 47

Exercises

1. Explore the existing code library to find 8 commonly used categories for methods.

2. Enter the Counter class into your system. Execute the following program:

| a |
a := Counter new.
a

increment;
increment.

a count

3. Which class defines the default version of the class method new?

4. Add a method asGrade to the Integer class. This method should return the following value:

Integer value Value Returned
90 or higher $A
80-89 $B
70-79 $C
60-69 $D
59 or less $F

5. Add a method gpa to SequenceableCollection. When sent to a collection containing the
characters $A, $B, $C, $D, $F the message gpa computes the grade point average on a 4.0
scale. In the 4.0 scale an A is worth 4 points, B is worth 3 points, etc. The method assumes
that all the grades are for courses with the same number of units.

6. Create a change set containing the source code for problems 4 and 5.

7. Extend 5 to include the grades A-, B+, B-, C+, C-, D+, D-.

