
2/28/01 Doc 8 Strategy & Null Object slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2001

Doc 8 Strategy & Null Object
Contents

Strategy ..2
Intent...2

Applicability ..5
Consequences ...6
Implementation ..7

NullObject ...8
Structure ..8
Applicability ..9
Consequences ...10
Implementation ..11
Binary Search Tree Example ...12

References

Design Patterns: Elements of Reusable Object-Oriented Software,
Gamma, Helm, Johnson, Vlissides, Addison-Wesley, 1995, pp. 315-
314

“Null Object”, Woolf, in Pattern Languages of Program Design
3, Edited by Martin, Riehle, Buschmmann, Addison-Wesley,
1998, pp. 5-18

Reading
Design Patterns: pp. 315-314

Copyright ©, All rights reserved. 2001 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

2/28/01 Doc 8 Strategy & Null Object slide # 2

Strategy
Intent

Define a family of algorithms, encapsulate each one, and
make them interchangeable

Strategy lets the algorithm vary independently from clients
that use it

Structure

Context

ContextInterface()

Strategy

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

strategy

2/28/01 Doc 8 Strategy & Null Object slide # 3

Examples

Sorting
Different types of sorts have different characteristics

Shellsort
 No extra space needed, Fast but not O(n*log(n))
 Very fast on nearly sorted data
 Does comparatively well on small lists

Quicksort
 Average case is O(n*log(n))
 Relatively poor performance on short lists
 Requires a stack of ~ log(n) in depth

MergeSort
 Worst case is O(n*log(n))
 Requires O(n) extra space
 Stable

Have a sorted list container, which one gives a sort algorithm

SortedList studentRecords = new SortedList(new ShellSort());
studentRecords.add(“Sam”);

pubic class SortedList {
Object[] elements;

SortStrategy sorter;

void sort() {
sorter.sort(elements);

}
}

2/28/01 Doc 8 Strategy & Null Object slide # 4

Pattern Matching

Finding a pattern in text is a common operation

Find the first occurrence of the word “NullObject” in this set of
notes after this line of text.

There are various algorithms one can use:

Brute Force
 Easy to implement
 Bad worst case, but good performance in practice

KMP
 Good worst case

Boyer-Moore
 Excellent worst case
 Very hard to implement

QuickSearch
 Easy to implement
 Good performance
 Good worst case

State Machines
 Very general

Could use a text object that has a pattern search object

2/28/01 Doc 8 Strategy & Null Object slide # 5

Applicability

Use the Strategy pattern when

• You need different variants of an algorithm

• An algorithm uses data that clients shouldn't know about

• A class defines many behaviors, and these appear as
multiple switch statement in the classes operations

• Many related classes differ only in their behavior

2/28/01 Doc 8 Strategy & Null Object slide # 6

Consequences

• Families of related algorithms

• Alternative to subclassing of Context

What is the big deal? You still subclass Strategy!

• Eliminates conditional statements

Replace in Context code like:

switch (flag) {
case A: doA(); break;
case B: doB(); break;
case C: doC(); break;

}

 With code like:

strategy.do();

• Gives a choice of implementations

• Clients must be aware of different Strategies

SortedList studentRecords = new SortedList(new ShellSort());

• Communication overhead between Strategy and Context

• Increase number of objects

2/28/01 Doc 8 Strategy & Null Object slide # 7

Implementation

• Defining the Strategy and Context interfaces

How does data flow between them

Context pass data to Strategy

Strategy has point to Context, gets data from Context

• Strategies as template parameters

Can be used if Strategy can be selected at compile-time
and does not change at runtime

SortedList<ShellSort> studentRecords;

• Making Strategy objects optional

Give Context default behavior

If default used no need to create Strategy object

2/28/01 Doc 8 Strategy & Null Object slide # 8

NullObject

Structure

Client AbstractObject

request()

RealObject

request()

NullObject

request() do nothing

NullObject implements all the operations of the real object,

These operations do nothing or the correct thing for nothing

2/28/01 Doc 8 Strategy & Null Object slide # 9

Applicability

Use the Null Object pattern when:

• Some collaborator instances should do nothing

• You want clients to ignore the difference between a
collaborator that does something and one that does nothing

Client does not have to explicitly check for null or some
other special value

• You want to be able to reuse the do-nothing behavior so
that various clients that need this behavior will consistently
work in the same way

Use a variable containing null or some other special value
instead of the Null Object pattern when:

• Very little code actually uses the variable directly

• The code that does use the variable is well encapsulated -
at least in one class

• The code that uses the variable can easily decide how to
handle the null case and will always handle it the same way

2/28/01 Doc 8 Strategy & Null Object slide # 10

Consequences
Advantages

• Uses polymorphic classes

• Simplifies client code

• Encapsulates do nothing behavior

• Makes do nothing behavior reusable

Disadvantages

• Forces encapsulation

Makes it difficult to distribute or mix into the behavior of
several collaborating objects

• May cause class explosion

• Forces uniformity

Different clients may have different idea of what “do
nothing” means

• Is non-mutable

NullObject objects can not transform themselves into a
RealObject

2/28/01 Doc 8 Strategy & Null Object slide # 11

Implementation

Too Many classes

Eliminate one class by making NullObject a subclass of
RealObject

Multiple Do-nothing meanings

If different clients expect do nothing to mean different things
use Adapter pattern to provide different do-nothing behavior
to NullObject

Transformation to RealObject

In some cases a message to NullObject should transform it
to a real object

Use the proxy pattern

2/28/01 Doc 8 Strategy & Null Object slide # 12

Binary Search Tree Example
Class Structure

Node

BinaryNode NullNode

Object Structure

Null
Node

10

5

8

20

Null
Node

Null
Node

Null
Node

Null
Node

2/28/01 Doc 8 Strategy & Null Object slide # 13

Searching for a Key

public class BinaryNode extends Node {
Node left = new NullNode();
Node right = new NullNode();
int key;

public boolean includes(int value) {
if (key == value)

return true;
else if (value < key)

return left.includes(value);
else

return right.includes(value);
}

etc.
}

public class NullNode extends Node {
public boolean includes(int value) {

return false;
}

etc.
}

2/28/01 Doc 8 Strategy & Null Object slide # 14

Comments on Example

• BinaryNode always has two subtrees

No need check if left, right are null

• Since NullNode has no state just need one instance

Use singleton pattern for the one instance

• Access to NullNode is usually restricted to BinaryNode

Forces indicate that one may not want to use the Null
Object pattern

However, familiarity with trees makes it easy to explain the
pattern

• Implementing an add method in NullNode

Requires reference to parent or

Use proxy

