
4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2001

Doc 14 Patterns, Refactoring & Testing
Contents

Patterns and Coding ..2
Refactoring..3

Testing ..4
Johnson's Law ..4
Why Unit Testing ..5
Testing First ..7
JUnit ..9

Using JUnit..10
What to Test ...20

Back To Refactoring...31
Code Smells ...32
Most Common Refactoring: Extract Method..33

Motivation..33
Mechanics ...34
Example ..36

References
JUnit Cookbook Local copy at: http://www.eli.sdsu.edu/java-
SDSU/junit/cookbook/cookbook.htm

JUnit Test Infected: Programmers Love Writing Tests Local copy at:
http://www.eli.sdsu.edu/java-SDSU/junit/testinfected/testing.htm

JUnit on-line documentation Local copy at: http://www.eli.sdsu.edu/java-SDSU/docs/

Originals of the above can be found at: http://www.junit.org/

Refactoring: Improving the Design of Existing Code, Fowler, 1999,

Testing for Programmers: A tutorial for OOPSLA 2000, Brian Marick,
http://www.testing.com/writings/half-day-programmer.pdf

Used here with permission from Brian Marick

A Short Catalog of Test Ideas, Brian Marick, http://www.testing.com/writings/short-catalog.pdf

Used here with permission from Brian Marick

Copyright ©, All rights reserved. 2001 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 2

Patterns and Coding

Ralph Johnson recommends using patterns with you know
you really need it

You have a program in development

You discover that using a pattern would improve the existing
code

But adding the pattern requires modifying existing code!

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 3

Refactoring

Refactoring is the modifying existing code without adding
functionality

Changing existing code is dangerous

• Changes can break existing code

To avoid breaking code while refactoring:

• Need tests for the code

Tests need to be automated

• Proceed in small steps

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 4

Testing

Johnson's Law

If it is not tested it does not work

Types of tests

• Unit Tests

Tests individual code segments

• Functional Tests

Test functionality of an application

• Regression Tests

Determine if new code produces results as old code

• White box testing

Testing with knowledge of the code

• Black box testing

Testing with no knowledge of the code

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 5

Why Unit Testing

If it is not tested it does not work

The more time between coding and testing

• More effort is needed to write tests
• More effort is needed to find bugs
• Fewer bugs are found
• Time is wasted working with buggy code
• Development time increases
• Quality decreases

Without unit tests

• Code integration is a nightmare
• Changing code is a nightmare

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 6

Who Writes Unit Tests?

Programmers

Waiting for QA or testing wastes time

• Long delay for feedback on code
• Programmers forget code in this delay
• Programmers use untested code in new code

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 7

Testing First

First write the tests

Then write the code to be tested

Writing tests first:

• Removes temptation to skip tests

• Makes you define of the interface & functionality of the code
before

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 8

Why Automated Tests

Why bother with automated test?

Just print results to standard out

Automated tests

• Allow you to run many tests at once
• Allow others to run the tests
• Allows you to keep the tests for later

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 9

JUnit

Framework for unit testing Java code

Available at: http://www.junit.org/

Already installed in JDK 1.2 & 1.3 on rohan and moria

Ports of JUnit are available in

C++ Delphi Eiffel
Forte 4GL Objective-C Perl
PowerBuilder Python Ruby
Smalltalk Visual Basic .net

See http://www.xprogramming.com/software.htm to download
ports of JUnit

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 10

Using JUnit
Example

Goal: Implement a Stack containing integers.

Tests:

Subclass junit.framework.TestCase

Methods starting with 'test" are run by TestRunner

First tests for the constructors:

package example;

Import junit.framework.TestCase;

public class StackTest extends TestCase {

//required constructor
public StackTest(String name) {

super(name);
}

public void testDefaultConstructor() {
Stack test = new Stack();
assert(test.isEmpty());

}

public void testSizeConstructor() {
Stack test = new Stack(5);
assert(test.isEmpty());

}
}

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 11

First part of the Stack

package example;

public class Stack {
int[] elements;
int topElement = -1;

public Stack() {
 this(10);
}

public Stack(int size) {
elements = new int[size];

}

public boolean isEmpty() {
return topElement == -1;

}
}

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 12

Running JUnit

JUnit has three interfaces

• Text (junit.textui.*)

• AWT (junit.ui.*)

• Swing (junit.swingui.*)

Shows list of previously run test classes

JUnit has two class loaders

• Normal java class loader (TestRunner)

• junit.util.TestCaseClassLoader (LoadingTestRunner)

Reloads classes without having to restart program

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 13

Starting TestRunner

Make sure your classpath includes the code to tested

On Rohan use:

java junit.ui.LoadingTestRunner

You get a window like:

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 14

Enter the full name of the test class

Click on the Run button

If there are errors/failures select one and click on Show

You will see a stack trace of the error

With LoadingTestRunner you can recompile the Stack & StackTest
classes without exiting LoadingTestRunner

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 15

Testing the Tests

If can be useful to modify the code to break the tests

package example;

public class Stack {
int[] elements;
int topElement = -1;

etc.

public boolean isEmpty() {
return topElement == 1;

}
}

One company had an automatic build and test cycle that ran at night. The daily build
was created and all the tests were run at night. The test results were available first
thing in the morning. One night the build process crashed, so the daily build was not
made. Hence there was no code to test. Still 70% of the tests passed. If they had
tested their tests, they would have discovered immediately that their tests were
broken.

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 16

Test Fixtures

Before each test setUp() is run

After each test tearDown() is run

package example;

import junit.framework.TestCase;

public class StackTest extends TestCase {
Stack test;

public StackTest(String name) {
super(name);

}

public void setUp() {
test = new Stack(5);
for (int k = 1; k <=5;k++)

test.push(k);
}

public void testPushPop() {
for (int k = 5; k >= 1; k--)

assert("Popping element " + k, test.pop() == k);
}

}

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 17

Suites – Multiple Test Classes

Multiple test classes can be run at the same time

Running AllTests in TestRunner runs the test in

StackTest
QueueTest

package example;
import junit.framework.TestSuite;

public class AllTests
{

static public TestSuite suite()
{

TestSuite suite= new TestSuite();
try

{
 suite.addTest(new TestSuite(StackTest.class));
 suite.addTest(new TestSuite(QueueTest.class));
 }
 catch (Exception e)
 {
 }
 return suite;

}
}

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 18

Using Main

We can use main to run the test via textui.TestRunner

The command:

java example.AllTests

will run all the tests in StackTest & QueueTest

package example;

import junit.framework.TestSuite;
import junit.textui.TestRunner;

public class AllTests
{
static public void main(String[] args)

{
TestRunner.main(args);
}

static public TestSuite suite()
{
same as last page
}

}

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 19

What to Test

Fowler on Testing1

"It is better to write and run incomplete tests than not to run
complete tests"

"Don't let the fear that testing can't catch all bugs stop you
from writing the tests that will catch most bugs"

"Trying to write too many tests usually leads to not writing
enough"

"Run your tests frequently"

"When you get a bug report, start by writing a unit test that
exposes the bug"

Think of the boundary conditions and concentrate your tests
there

1 Fowler Chapter 4, pp. 89-102

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 20

Programming Errors

Programmers tend to make the same errors many times

Keep a list or catalog of your errors

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 21

A Short Catalog of Test Ideas

Tests develop catalogs of commonly found errors in programs

Since errors are often repeated, this helps testers find
common errors

As programmers such a catalog:
• Suggests tests to uncover errors
• Help avoid errors when writing code

If we know these are common errors, we can keep them in
mind while coding

The following catalog is from Brian Marick

http://www.testing.com/writings/short-catalog.pdf

The catalog is used here with permission

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 22

Any Object

Test nil(null) references and pointers to objects

In Java/Smalltalk

Does the code handle correctly variables & parameters that
are null(nil)

Java

String firstName = null

Smalltalk

| firstName |
firstName := nil.

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 23

Strings

Test the empty string

Does the code to the correct thing when string
variables/parameters are the empty string

In Java/Smalltalk an empty string is not the same as a null(nil)
reference to a string

Java

String firstName = "";
String secondName = new String();

Smalltalk

| firstName secondName |
firstName := ''.
secondName := String new

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 24

Numbers

Test the code using:

• 0
• The smallest number

Often numbers are used in a context with a valid range

The smallest number refers to the smallest valid number in
the range

• Just below the smallest number
• The largest number
• Just above the largest number

Example

int planetIndex;//Represents the I'th planet from the Sun

Numbers to test
0 Below the smallest
1 Smallest
9 Largest (Pluto is still considered a planet)
10 Above the largest

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 25

Collections

Test the code using:
• An empty collection
• A collection with one element
• The largest possible collection

Not the largest possible collection allowed by the
language/hardware

The largest possible collection the system will encounter

If this is not possible use a collection with more than one
element

• A collection with duplicate elements

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 26

Linked Structures (trees, graphs, etc.)

Test the code using:
• An empty structure
• Minimal non-empty structure
• A circular structure
• A structure with depth greater than one

The test must make the code reach the lowest depth

If the structure in the context has a maximally deep use that
level

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 27

Equality Testing of Objects

Objects have two meanings of equality

• Pointer Identical
Two object references point to the same memory location

• Equal
The fields of the two objects have the same value

Java

• ==
Tests if two object references are pointer identical

• equals()
Tests if two objects are equal

If this method is not implemented in a class it defaults to ==

Smalltalk

• ==
Tests if two object references are pointer identical

• =
Tests if two objects are equal

If this method is not implemented in a class it defaults to ==

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 28

Test the code with objects equal but not identical

Lack of pointer identity should extend as far down as is
meaningful to the code

X

Y

Foo

5
'cat'

Bar

10

Foo

5
'cat'

Bar

10

Test the code with objects different at the lowest level

X

Y

Foo

5
'cat'

Bar

10

Foo

5
'cat'

Bar

12

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 29

Don't Forget

"Trying to write too many tests usually leads to not writing
enough … You get many benefits from testing even if you do
a little testing …"

Fowler

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 30

Back To Refactoring

Refactoring requires:
• Testing

• Knowing when code could be improved

• Knowing how to improve the code

• Knowing the benefits of the improvement

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 31

Code Smells

If it stinks, change it

-- Grandma Beck on child-rearing

Some Smells

Duplicate Code Long Method
Large Class Long Parameter List
Divergent Change Shotgun Surgery
Feature Envy Data Clumps
Primitive Obsession Switch Statements
Parallel Inheritance Hierarchies Lazy Class
Speculative Generality Temporary Field
Message Chains Middle Man
Inappropriate Intimacy Alternative Classes with Different

Interfaces
Incomplete Library Class Data Class
Refused Bequest Comments

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 32

Most Common Refactoring: Extract Method2

You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the
purpose of the method

Motivation

Short methods:

• Increase possible reuse
• Makes high level methods easier to read
• Makes easier to override methods

2 Refactoring Text, pp. 110-116

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 33

Mechanics

• Create a new method - the target method

Name the target method after the intention of the method

With short code only extract if the new method name is
better than the code at revealing the code's intention

• Copy the extracted code from the source method into the
target method

• Scan extracted code for references to local variables
(temporary variables or parameters) of the source method

• If a temporary variable is used only in the extracted code
declare it local in the target method

• If a parameter of the source method is used in the extracted
code, pass the parameter to the target method

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 34

Mechanics - Continued

• See if the extracted code modifies any of the local variables
of the source method

If only one variable is modified, then try to return the
modified value

If more than one variable is modified, then the extracted
code must be modified before it can be extracted

Split Temporary Variables or Replace Temp with Query
may help

• Compile when you have dealt with all the local variables

• Replace the extracted code in source code with a call to the
target method

• Compile and test

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 35

Example3

No Local Variables

Note I will use Fowler's convention of starting instance
variables with "_" even though one can not do this is Squeak.

void printOwing() {

//print banner
System.out.println("*************************");
System.out.println("****Customer Owes*********");
System.out.println("*************************");

Iterator orders = _orders.iterator();
double outstanding = 0.0;

// Calculate outstanding
while (orders.hasNext()) {

Order each = (Order) orders.next();
outstanding = outstanding + each.getAmount();

}

//Print Details
System.out.println("name: " + _name);
System.out.println("amout: " + outstanding);

}

3 Example code is Squeak version of Fowler's Java example

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 36

Extracting the banner code we get:

void printOwing() {

printBanner();

Iterator orders = _orders.iterator();
double outstanding = 0.0;

// Calculate outstanding
while (orders.hasNext()) {

Order each = (Order) orders.next();
outstanding = outstanding + each.getAmount();

}

//Print Details
System.out.println("name: " + _name);
System.out.println("amout: " + outstanding);

}

void printBanner() {
System.out.println("*************************");
System.out.println("****Customer Owes*********");
System.out.println("*************************");

}

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 37

Examples: Using Local Variables

We can extract printDetails() to get

void printOwing() {

printBanner();

Iterator orders = _orders.iterator();
double outstanding = 0.0;

// Calculate outstanding
while (orders.hasNext()) {

Order each = (Order) orders.next();
outstanding = outstanding + each.getAmount();

}

printDetails(outstanding);
}

void printDetails(double amountOwed) {
System.out.println("name: " + _name);
System.out.println("amout: " + outstanding);

}

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 38

Then we can extract outstanding to get:

void printOwing() {

printBanner();
double outstanding = outStanding();
printDetails(outstanding);

}

double outStanding() {
Iterator orders = _orders.iterator();
double outstanding = 0.0;

while (orders.hasNext()) {
Order each = (Order) orders.next();
outstanding = outstanding + each.getAmount();

}
return outstanding;

}

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 39

Using Replace Parameter with Method4 we can change this
to:

void printOwing() {
printBanner();
printDetails();

}

void printDetails() {
System.out.println("name: " + _name);
System.out.println("amout: " + outstanding());

}

4 Fowler pp. 292-294

4/3/01 Doc 14, Patterns, Refactoring & Testing slide # 40

Reducing Coupling

The printing is still coupled to System.out

Using Add Parameter we get:

void printOwing(PrintString out) {
printBanner(out);
printDetails(out);

}

where

void printDetails(PrintString out) {
out.println("name: " + _name);
out.println("amout: " + outstanding());

}

void printBanner(PrintString out) {
out.println("*************************");
out.println("****Customer Owes*********");
out.println("*************************");

}

If you really do print to the screen a lot, you might add:

void printOwing() {
printOwing(System.out);

}

