2/13/01 Doc 3 Object Coupling & Cohesion slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2001
Doc 3 Object Coupling & Cohesion

Contents
Object CoUPIING ...ccuu i 2
Interface Coupling.......ccoooviiiiii i, 3
Object Abstraction Decouplingccoveeuiieiiiiieiiii e, 4
Selector Decouplingoovveiiiii i, 6
Primitive Methods ..., 7
SIBCIONS. .. e 8
(O0] 1511 1§ [0 0] £ TP 9
Inside Internal Object Coupling.......ccccoveiiiiiiiiie, 18
Outside Internal Coupling from Underneath 20
Outside Internal Coupling from the Side..............ccoiieii, 21
ObjJecCt CONESION.......cooi e 22
References

Object Coupling and Object Cohesion, chapter 7 of Essays on
Object-Oriented Software Engineering, Vol 1, Berard, Prentice-
Hall, 1993,

Copyright ©, All rights reserved. 2001 SDSU & Roger Whitney, 5500 Campanile
Drive, San Diego, CA 92182-7700 USA. OpenContent
(http://www.opencontent.org/opl.shtml) license defines the copyright on this
document.

2/13/01 Doc 3 Object Coupling & Cohesion slide # 2

Object Coupling

N

Interface Coupling Internal Coupling
In=ide Chatside
Internal Internal
Coupling Coupling
From From
the Si1de Underneath

Very little is written about object coupling. For more information see “Managing Class
Coupling: Apply the Principles of Structured Design to Object-Oriented Programming,”
UNIX Review, Vol. 2, No. 1, May/June 1989, pp. 34-40.

Coupling measures the strength of the physical relationships
among the items that comprise an object

Cohesion measures the logical relationship among the items
that comprise an object

Interface coupling is the coupling between an object and all
objects external to it. Interface coupling is the most desirable
form of object coupling. Internal coupling is coupling among the
items that make up an object.

2/13/01 Doc 3 Object Coupling & Cohesion slide # 3

Object Coupling
Interface Coupling

Interface coupling occurs when one object refers to another
specific object, and the original object makes direct references
to one or more items in the specific object's public interface

Includes module coupling already covered
Weakest form of object coupling, but has wide variation

Sub-topics
Object abstraction decoupling
Selector decoupling
Constructor decoupling
Iterator decoupling

2/13/01 Doc 3 Object Coupling & Cohesion slide # 4

Object Abstraction Decoupling

Assumptions that one object makes about a category of other
objects are isolated and used as parameters to instantiate the
original object.

Example: Listitems

C++ templates and Ada’s generics are the constructs Berard is talking about. Making the
LinkedListCell a template removes any type specific code from the LinkedListCell class.
This helps insure that the class can hold any type.

C++ Example
class LinkedListCeall {
int cellltem;
LinkedListCell* next;

// code can now use fact that cellltem isan int
if (cellltem==5) print("WeWin");
}

template <class type>

class LinkedListCell#2 {
type cellltem;
LinkedListCell* next;

// code does not know thetype, it isjust acell item,
/I it becomes an abstraction

}

2/13/01 Doc 3 Object Coupling & Cohesion slide # 5

Java Example
Java does not support templates. Instead it supports Object as a root type. Using an
Object as a type in the LinkedListCell class has some of the decoupling that Ada
generics or C++ templates achieve. However, it provides only one category of objects
(all of them). This solution that Smalltalk (with no compile time type checking) also
supports. The no compile time type checking solution is a common source of flame wars
in the net. Java interfaces can be used to achieve decoupling in the same situations as
Ada generics or C++ templates.

class LinkedListCellA {
int calltem:
LinkedListCdl* next;

If (celllitem==5) print("WeWin");
}

class LinkedListCellB {
Object cellltem;
LinkedListCdl* next;

if (cellltem.operationl()) print("We Win");
}

2/13/01 Doc 3 Object Coupling & Cohesion slide # 6

Selector Decoupling

Example: Counter object

class Counter{
Int count = O;

public void increment() { count++;}
public void reset() { count =0; }

public void display() {
code to display the counter in a dlider bar
}

Display of Counter

"display" couples the counter object to a particular output type

The counter class can not be used in other setting due to this
coupling

Better Counter Class
class Counter{
int count = O;

public void increment() { count++; }
public void reset() { count =0; }
public String toString() { return String.valueOf(count);}

}

2/13/01 Doc 3 Object Coupling & Cohesion slide # 7

Primitive Methods

A primitive method is any method that cannot be implemented
simply, efficiently, and reliably without knowledge of the
underlying implementation of the object
Primitive methods are:

Functionally cohesive, they perform a single specific function

Small, seldom exceed five "lines of code"
A composite method is any method constructed from two or
more primitive methods — sometimes from different objects
Types of Primitive Operations

Selectors (get operations)

Constructors (not the same as class constructors)

Ilterators

2/13/01 Doc 3 Object Coupling & Cohesion slide # 8

Selectors
Selectors are encapsulated operations which return state
information about their encapsulated object and do not alter the
state of their encapsulated object
Replacing
public void display() {

code to display the counter

}
with

public String toString() { return String.valueOf(count);}
is an example of Selector decoupling.

By replacing a composite method (display) with a primitive
method the Counter class is decoupled from the display device

This makes the Counter class far more useful

It also moves the responsibility of displaying the counter
elsewhere

2/13/01 Doc 3 Object Coupling & Cohesion slide # 9

Constructors

Operations that construct a new, or altered version of an object

Java and C++ both have language constructs called constructors. Berard has in mind a
larger class of operations than those. Often static methods are used as constructors to
create new objects.

Berard’s example illustrating constructor decoupling is extremely vague. The fromString
method below does make it clear what type of parameter is needed to create a new
calendar object. One point to learn from his discussion is the desirability to have well
defined interface to creating objects from primitive objects.

class Calendar {

public void getMonth(from where, or what) { blah }
}

class Calendar {
public static Calendar fromString(String date) { blah}

}

2/13/01 Doc 3 Object Coupling & Cohesion slide # 10

Primitive Objects
Primitive objects are objects that are both:
Defined in the standard for the implementation language

This can include standard libraries and standard
environments

Globally known

That is any object that is known in any part of any application
created using the implementation language

Primitive objects don't count in coupling with other objects

" An object that refers to itself and to primitive objects is
considered for all intents and purposes, totally decoupled from
other objects"

The motivation here is that primitive objects are very stable, that is will not change. If
they do not change, then we do not have to be concerned about coupling with them. One
reason to reduce coupling is to make it easier to deal with changes. A second reason to
reduce coupling is to improve reuse. If class A uses class B, which is universally
available to all programs using the language, then class A’s reusability is not affected by
using class B. Berard’'s argument has two problems. First, standard libraries do change
over time. Look at the number of deprecated methods in the Java API. Of course, the
Java APl is very young. As the language ages, its core API should be more stable. The
second problem is one can delude oneself about a company’s or personal class library
as being “standard” and stable (and hence primitive) when they are not.

2/13/01 Doc 3 Object Coupling & Cohesion slide # 11

Composite Object

Object conceptually composed of two or more objects

Heterogeneous Composite Object

Object conceptually composed from objects which are not all
conceptually the same

The date class below is composed of three items that are the same type: ints. However,
these ints represent different conceptual entities.

class Date{
int year;
int month;
int day;

}

Homogeneous Composite Object

Object conceptually composed from objects which are all
conceptually the same

list of names - each item is a member of the same general
category of object — a name

Berard’s homogeneous composite objects are basically container objects.

2/13/01 Doc 3 Object Coupling & Cohesion slide # 12

Ilterator

Allows the user to visit all the nodes in a homogeneous

composite object and to perform some user-supplied operation
at each node

Both Java and C++ support iterators

2/13/01 Doc 3 Object Coupling & Cohesion slide # 13

Passive lterator

Neither Java nor C++ support passive iterators. Smalltalk does support them. In a
passive iterator, you pass a method or function to the composite object, and the object
then applies the method to all elements in the object. Passive iterators in Smalltalk are
very powerful. Passive iterators require very minimal code to use. They require efficient
ways to deal with method/functions as parameters. Only one passive iterator can be
active on an object at a time.

classList{
Object[] listElements = new Object| size];

public void do(Function userOperation) {

for (int k = O; k < listElements.length(); k++)
userOperation(listElementg] k |);

In Main

List grades = new List();
aFunction = (item){ print(item) };

grades.do (aFunction);

2/13/01

Java (Enumeration, Iterator (JDK1.2), Listlterator (JDK1.2), StringCharacterlterator) and

Doc 3 Object Coupling & Cohesion slide # 14

Active lterator

C++ (in STL) use active iterators.

List grades = new List();

Iterator gradelist = grades.iterator();

while (gradeList.hasNext()){
listitem = gradeL ist.next();

print (listltem);
}
Java Enumeration/Iterator
Methods
Enumeration Iterator Listlterator
hasMoreElements() | hasNext() hasNext()
nextElement() next() next()
remove() remove()
nextindex()
hasPrevious()
previous()
previousindex()
add()
set()

Iterators go through elements of a collection.

Ilterator and Listlterator are fail-fast

If the underlying collection is changed (elements added or removed) by means other

than the iterator, then the next time the iterator is accessed it will throw a
java.util.ConcurrentModificationException

2/13/01 Doc 3 Object Coupling & Cohesion slide # 15

Iterators and Coupling

Using iterators reduces coupling by hiding the details of traversing through elements of a
collection. If one used the non-iterator method of accessing the elements of collections, it
becomes a lot of work to replace the use of one collection with another. One might want
to replace an array with a binary search tree for better performance.

Array
int[] list

for (int k = 0; k < list.length; k ++)
System.out.printin(list[K]);

Vector
Vector list

for (int kK =0; k < list.s1z&(); k++)
Sytem.out.printIn(list.elementAt(k));

Binary Search Tree
BinarySeachTree list

Node current = list.root();
Stack previous = new Stack();
Previous.push(current);

while (current !=null)

{

alot of code here

}

2/13/01 Doc 3 Object Coupling & Cohesion slide # 16

Java Collection Classes

Collection Map
/s

Set I7ist HashMap /l Hashtable| SortedMap
I\ |
/ N //I \ WeakHashMap |
Sorte:JISet HashSet ;| \\ TreeMap
| / ! \
‘ ! ‘ Implements
TreeSet ArrayList| 1 [LinkedList Class | " "=
Interface Extends
Vector

There are synchronized, unsynchronized, modifiable
unmodifiable versions of each collection/map

One can set the modifiable and synchronized property
separately

What about Arrays?

One of Java's defects is not making an Array class and making it part of the collection
class hierarchy. As a result one has to treat arrays differently from all other collections.
Since arrays are very common, the effectiveness of the collection class hierarchy is
greatly lessened. However, since most programmers have not used a uniform collection
class structure they do not realize how much easier life can be.

One can convert an array of objects to a list

String[] example = new String[10];
List listBackedByArray = Arrays.asList(example);

Changes to the array(list) are reflected in the list(array)

2/13/01 Doc 3 Object Coupling & Cohesion slide # 17

Less Coupling with Iterators
Collection ligt;
Iterator elements = list.iterator();

while (elements.hasNext()) {
System.out.printIn(elements.next());

}

In this code list could be any type of collection, so is more
flexible. It is not coupled to a particular type of collection.

2/13/01 Doc 3 Object Coupling & Cohesion slide # 18

Inside Internal Object Coupling
Coupling between state and operations of an object
The big issue: Accessing state

Changing the structure of the state of an object requires
changing all operations that access the state including
operations in subclasses

Solution: Access state via access operations

C++ implementation
Provide private functions to access and change each data
member
Simple Cases:
One function to access the value of the date member
One function to change the value of the data member

Only these two functions can access the data member

When an object is used as state, then providing access methods for that object can be
far more complex. Assume that the state object itself has 10 methods. Now we may
need to provide 12 access methods not just two. If a class have three such state objects,
then it may need far too many access methods to be practical.

2/13/01 Doc 3 Object Coupling & Cohesion slide # 19

Accessing State
C++ Example

class Counter{
public:
void increment(void);

private:
int value;

void setVaue(int newVaue);
int getVaue(void);
¥

void Counter::increment(void) //Increase counter by one {
setValue(getValue() + 1);

};

void Counter::setVaue(int newValue) {
value = newValue;

};

int Counter::getValue {
return value;

};

2/13/01 Doc 3 Object Coupling & Cohesion slide # 20

Outside Internal Coupling from Underneath
Coupling between a class and subclass involving private state
and private operations
Major Issues:

- Access to inherited state
Direct access to inherited state
See inside internal object coupling
Access via operations
Inherited operations may not be sufficient set of operations
to access state for subclass
Unwanted Inheritance

Parent class may have operations and state not needed by
subclass

Unwanted inheritance makes the subclass unnecessarily
complex. This reduces understandability and reliability.

2/13/01 Doc 3 Object Coupling & Cohesion slide # 21

Outside Internal Coupling from the Side
Class A accesses private state or private operations of class B

Class A and B are not related via inheritance

Main causes:
Using nonobject-oriented languages
Special language "features”

C++ friends

Donald Knuth

"First create a solution using sound software engineering
techniques, then if needed, introduce small violations of good
software engineering principles for efficiency's sake."

2/13/01 Doc 3 Object Coupling & Cohesion slide # 22

Object Cohesion
The degree to which components of a class are tied together
Evaluating cohesion requires:
- Technical knowledge of the application domain

Some experience in building, modifying, maintaining, testing
and managing applications in the appropriate domain

- Technical background in and experience with reusability

2/13/01 Doc 3 Object Coupling & Cohesion slide # 23

Questions to probe cohesiveness of an object
Does the object represent a complete and coherent concept or
does it more closely resemble a partial concept, or a random
collection of information?

Does the object directly correspond to a "real world entity,"
physical or logical?

Is the object characterized in very non-specific terms?
Collection of data, statistics, etc.

Do each of the methods in the public interface for the object
perform a single coherent function?

If the object (or system of objects) is removed from the context
of the immediate application, does it still represent a coherent
and complete object-oriented concept?

For objects that are "system of objects”
Does the system represent an object-oriented concept?
Do all the objects directly support, or directly contribute to the
support of, the object-oriented concept that the system

represents?

Are there missing objects?

2/13/01 Doc 3 Object Coupling & Cohesion slide # 24

Objects in Isolation

Isolation means without considering any hierarchy that may
contain the object or class

Does not discuss non-objects:

- Object with only functions
Objects with only data

2/13/01 Doc 3 Object Coupling & Cohesion slide # 25

Individual Objects

A primitive method is any method that cannot be implemented
simply, efficiently, and reliably without knowledge of the
underlying implementation of the object

A composite method is any method constructed from two or
more primitive methods — sometimes from different objects

A sufficient set of primitive methods for an object is a
minimum set of primitive methods to accomplish all necessary
work with on the object

A sufficient set of primitive methods has two major problems:

- Some tasks may be awkward and/or difficult with just a
sufficient set of primitive methods

- A sufficient set of primitive methods may not allow us to fully
capture the abstraction represented by the object

A complete set of primitive methods is a set of primitive
methods that both allows us to easily work with the object, and
fully captures the abstraction represented by the object.

2/13/01 Doc 3 Object Coupling & Cohesion slide # 26

An object is not as cohesive as it could be if the public interface
contains:

- Only primitive methods, but does not fully capture the
abstraction represented by the object

Primitive and composite methods, but does not fully capture
the abstraction represented by the object

- A sufficient set of primitive methods with composite methods
No primitive methods, just composite methods

Note

- Objects with a sufficient set of primitive methods with
composite methods is more cohesive than objects with out a
sufficient set of primitive methods

- All public methods must directly support the abstraction

represented by the object. The methods must make sense
when object is removed from the application

2/13/01 Doc 3 Object Coupling & Cohesion slide # 27

Composite Objects

A composite object is an object that is conceptually composed
of two, or more, other objects, which are externally discernable.

Component objects are those that make up the composite
object.

Component objects are externally discernable if

Component objects can be directly queried or changed via
methods in the public interface of the composite object and/or

- The externally discernible state of the object is directly
affected by the presence or absence of one or more
component objects

2/13/01 Doc 3 Object Coupling & Cohesion slide # 28

Ranking of Cohesion of Composite Objects
Increasing order of Goodness

Externally discernible component objects not related

Some externally discernible component objects are related,
the group component objects does not make sense

- The group component objects does not represent a single
stable object-oriented concept, but are all bound together
some how in an application

- A majaroity of the externally discernible component objects
support a single,coherent, object-oriented concept, but at
least one does not

- All of the externally discernible component objects support a
single,coherent, object-oriented concept, but at least one
needed is missing

- All of the externally discernible component objects support a
single,coherent, object-oriented concept, and none are
missing

2/13/01 Doc 3 Object Coupling & Cohesion slide # 29

Accessing Cohesion of an Individual Object

Accessment of the public methods/public non-
methods/component objects

Are all the items appropriate for the given object?
Do we have at least a minimally sufficient set of items?

Do we have extra or application-specific items?

