
5/8/01 Doc 22 Mediator slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2001

Doc 22 Mediator
Contents

Mediator .. 2
Structure ... 2
Motivating Example .. 4
Issues ... 6

References

Design Patterns: Elements of Resuable Object-Oriented
Software, Gamma, Helm, Johnson, Vlissides, Addison
Wesley, 1995, pp. 273-282

Copyright ©, All rights reserved. 2001 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

5/8/01 Doc 22 Mediator slide # 2

Mediator

A mediator is responsible for controlling and coordinating the
interactions of a group of objects (not data structures)

Structure
Classes

Mediator

ConcreteMediator

Colleague

ConcreteColleague1

mediator

ConcreteColleague2

Objects

aColleague
mediator

aColleague
mediator

aColleague
mediator

aConcreteMediator aColleague

mediator

5/8/01 Doc 22 Mediator slide # 3

Participants

Mediator

Defines an interface for communicating with Colleague
objects

ConcreteMediator

Implements cooperative behavior by coordinating Colleague
objects

Knows and maintains its colleagues

Colleague classes

Each Colleague class knows its Mediator object

Each colleague communicates with its mediator whenever it
would have otherwise communicated with another
colleague

5/8/01 Doc 22 Mediator slide # 4

Motivating Example
Dialog Boxes

Objects

aClient

director

aListBox

director

aButton

director
anEntryField

director

aFontDialogDirector

Interaction

How does this differ from a God Class?

5/8/01 Doc 22 Mediator slide # 5

When to use the Mediator Pattern

When a set of objects communicate in a well-defined but
complex ways

When reusing an object is difficult because it refers to and
communicates with many other objects

When a behavior that's distributed between several classes
should be customizable without a lot of subclassing

5/8/01 Doc 22 Mediator slide # 6

Issues
How do Colleagues and Mediators Communicate?

1) Explicit methods in Mediator

class DialogDirector
{
private Button ok;
private Button cancel;
private ListBox courses;

public void ListBoxItemSelected() { blah}

public void ListBoxScrolled() { blah }
etc.
}

2) Generic change method

class DialogDirector {
private Button ok;
private Button cancel;
private ListBox courses;

public void widgetChanged(Object changedWidget) {
if (changedWidget == ok) blah
else if (changedWidget == cancel) more blah
else if (changedWidget == courses) even more blah

}
}

5/8/01 Doc 22 Mediator slide # 7

3) Generic change method overloaded

class DialogDirector
{
private Button ok;
private Button cancel;
private ListBox courses;

public void widgetChanged(Button changedWidget)
{
if (changedWidget == ok)

blah
else if (changedWidget == cancel)

more blah
}

public void widgetChanged(ListBox changedWidget)
{
now find out how it changed and
respond properly
}

}

5/8/01 Doc 22 Mediator slide # 8

Differences from Facade

Facade does not add any functionality, Mediator does

Subsystem components are not aware of Facade

Mediator's colleagues are aware of Mediator and interact with
it

