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Flyweight
Motivation

When a program needs a large number of objects, the space
requirements can be come too large

The example in the text uses objects to represent individual
characters of the alphabet

Using objects allows the program to treat characters like any
other part of the document - as an object

A character, like “G”, may require a fair amount of information:

• The character type - G not h or y
• Its font
• Its width, height, ascenders, descenders, etc.
• How to display/print the character
• Where it is in the document

Most of this information is the same for all instances of the
same letter



Intrinsic State

• Information that is independent from the objects context

• The information that can be shared among many objects

Extrinsic State

• Information that is dependent on the objects context

• The information that can not be shared among objects

So create one instance of the object and use the same object
wherever you need an instance

The one object can store the intrinsic state, but someone else
needs to store the extrinsic state for each context of the object



Structure

Client

FlyweightFactory

getFlyweight( key )

Flyweight

operation( extrinsicState )

ConcreteFlyweight

intrinsicState

operation( extrinsicState )

UnsharedConcreteFlyweight

allState

operation( extrinsicState )

flyweight

if (flywight[key] exists)
return existing flyweight

else
create new flyweight
add it to flyweight pool
return new flyweight



Applicability

The pattern can be used when all the following are true

• The program uses a large number of objects

• Storage cost are high due to the sheer quantity of objects

• The program does not use object identity

MyClass* objectPtrA;
MyClass* objectPtrB;

if ( objectPtrA == objectPtrB ) //testing object identity

• Most object state can be made extrinsic

Extrinsic state is data that is stored outside the object

The extrinsic state is passed to the object as an argument
in each method

• Many objects can be replaced by a relatively few shared
objects, once the extrinsic state is removed



Example

State transitions

Start State comes first
When get user name transfer to HaveUserName State
When get correct password transfer to Authorized State

HaveUserName and Authorized states need the user name

In concurrent server we may have many (100's) different
users connected at the same time.

State creation can become expensive, so create each state
once

Each time use the state pass the user name to the state



class HaveUserName extends SPopState
{
private HaveUserName() {};
private static HaveUserName instance;

public getInstance( )
{
if ( instance == null )

instance = new HaveUserName();
return instance;
}

public SPopState pass( String userName, String password )
{
if ( validateUser( userName, password )

return Authorized.getInstance();
else

return Start.getInstance();
}

}



Implementation

Separating state from the flyweight

This is the hard part

Must remove the extrinsic state from the object

Store the extrinsic state elsewhere

This needs to take up less space for the pattern to work

Each time you use the flyweight you must give it the proper
extrinsic state

Managing Flyweights

Cannot use object identity on flyweights

Need factory to create flyweights, cannot create directly

How do we know when we are done with a flyweight?



Facade
Review of Wirfs-Brock (CRC Design Process)

• Exploratory Phase

Who is on the team?

What are their tasks, responsibilities?

Who works with whom?

• Analysis Phase

Who's related to whom?

Finding sub teams

Putting it all together



Exploratory Phase

• Who is on the team?

What are the goals of the system?

What must the system accomplish?

What objects are required to model the system and
accomplish the goals?

• What are their tasks, responsibilities?

What does each object have to know in order to accomplish
each goal it is involved with?

What steps toward accomplishing each goal is it
responsible for?

• Who works with whom?

With whom will each object collaborate in order to
accomplish each of its responsibilities?

What is the nature of the objects' collaboration?



Analysis Phase

• Who's related to whom?

Determine which classes are related via inheritance

Finding abstract classes

Determine class contracts

• Finding sub teams

Divide responsibilities into subsystems

Designing interfaces of subsystems and classes

• Putting it all together

Construct protocols for each class

Produce a design specification for each class and
subsystem

Write a design specification for each contract



Subsystems

Subsystems are groups of classes, or groups of classes and
other subsystems, that collaborate among themselves to
support a set of contracts

There is no conceptual difference between the responsibilities
of a class and a subsystem of classes

The difference between a class and subsystem of classes is a
matter of scale

A subsystem should be a good abstraction

There should be as little communication between different
subsystems as possible



The Facade Pattern - Basic Idea

Create a class that is the interface to the subsystem

Clients interface with the Facade class to deal with the
subsystem

Client

Facade

subsystem
classes

Client

???

Consequences of Facade Pattern

It hides the implementation of the subsystem from clients

It promotes weak coupling between the subsystems and its
clients

It does not prevent clients from using subsystem classes
directly, should it?

Facade does not add new functionality to the subsystem


