
2/18/01 Doc 4 Design Pattern Intro slide # 1

CS 635 Advanced Object-Oriented Design & Programming
Spring Semester, 2001

Doc 4 Design Pattern Intro
Contents

Design Patterns..2
Examples of Patterns ...3

A Place To Wait ..3
Chicken And Egg ..5
A Pattern Language for the Preparation of Software Demonstrations..................................6

Benefits of Software Patterns...13
Common Forms For Writing Design Patterns..14
Design Principle 1...15
Design Principle 2...17

Exercises ..20

References

Patterns for Classroom Education, Dana Anthony, pp. 391-406, Pattern Languages of Program
Design 2, Addison Wesley, 1996

Demo Prep: A Pattern Language for the Preparation of Software Demonstrations, Todd
Coram, pp. 407-416, Pattern Languages of Program Design 2, Addison Wesley, 1996

A Pattern Language, Christopher Alexander, 1977

Software Patterns, James Coplien, 1996, 2000, http://www1.bell-
labs.com/user/cope/Patterns/WhitePaper/

Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson,
Vlissides, 1995

Reading

Design Patterns chapter 1.

Copyright ©, All rights reserved. 2001 SDSU & Roger Whitney, 5500 Campanile Drive, San
Diego, CA 92182-7700 USA. OpenContent (http://www.opencontent.org/opl.shtml) license
defines the copyright on this document.

2/18/01 Doc 4 Design Pattern Intro slide # 2

Design Patterns
What is a Pattern?

"Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice"

"Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem, and a solution"

Christopher Alexander on architecture patterns

"Patterns are not a complete design method; they capture
important practices of existing methods and practices
uncodified by conventional methods"

James Coplien

2/18/01 Doc 4 Design Pattern Intro slide # 3

Examples of Patterns
A Place To Wait1

The process of waiting has inherent conflicts in it.

Waiting for doctor, airplane etc. requires spending time
hanging around doing nothing

Can not enjoy the time since you do not know when you must
leave

Classic "waiting room"
Dreary little room
People staring at each other
Reading a few old magazines
Offers no solution

Fundamental problem
How to spend time "wholeheartedly" and
Still be on hand when doctor, airplane etc arrive

Fuse the waiting with other activity that keeps them in earshot
Playground beside Pediatrics Clinic
Horseshoe pit next to terrace where people waited

Allow the person to become still meditative
A window seat that looks down on a street
A protected seat in a garden
A dark place and a glass of beer
A private seat by a fish tank

1 Alexander 1977, pp. 707-711

2/18/01 Doc 4 Design Pattern Intro slide # 4

A Place To Wait
Therefore:

"In places where people end up waiting create a situation
which makes the waiting positive. Fuse the waiting with some
other activity - newspaper, coffee, pool tables, horseshoes;
something which draws people in who are not simple waiting.
And also the opposite: make a place which can draw a person
waiting into a reverie; quiet; a positive silence"

2/18/01 Doc 4 Design Pattern Intro slide # 5

Chicken And Egg2

Problem

Two concepts are each a prerequisite of the other

To understand A one must understand B

To understand B one must understand A

A "chicken and egg" situation

Constraints and Forces

First explain A then B

Everyone would be confused by the end

Simplify each concept to the point of incorrectness to explain
the other one

People don't like being lied to

Solution

Explain A & B correctly by superficially

Iterate your explanations with more detail each iteration

2 Anthony 1996

2/18/01 Doc 4 Design Pattern Intro slide # 6

A Pattern Language for the Preparation of Software
Demonstrations3

The patterns:

• Element Identification
• Catalytic Scenarios
• Mutable Code
• Prototyping Languages
• Lightweight User Interfaces
• Judicious Fireworks
• Archive Scenarios

3 Coram, 1996

2/18/01 Doc 4 Design Pattern Intro slide # 7

Element Identification Pattern
Problem

Selecting the right features to demo is a critical part of keeping
the customer's confidence

Context

Have requirements

Working on demo to easy customers doubts about committing
to or continuing with the software project

Forces

Need to demonstrate your ability to deliver "things that work"

Need to show some level of functionality

Customer wants to see the product's face - the GUI

If customer is not happy with the demo, they are not likely to
like the end product

Demos build confidence and create anticipation

2/18/01 Doc 4 Design Pattern Intro slide # 8

Element Identification Pattern
Solution

Identify key areas that concern the customer

Talk to the customer
Listen carefully

Stay away from excessive animations or other visual
embellishments

Unless the product is a game, the product is to help the
customer get some work done not to entertain people

The product's face can be shown through Lightweight User
Interface (pattern 5)

Functionality can be addressed by Prototyping Languages
(pattern 4)

2/18/01 Doc 4 Design Pattern Intro slide # 9

Catalytic Scenarios
Problem

The customer has specified what they think they want

You don't want to build the wrong thing

Context

Starting a project to develop software based on requirements
and specification that have already been agreed on

Forces

Customer may not really know what they want

Requirements may not accurately reflect customer's
requirements

Requirements may be ambiguous

Customer expects to be given vision of the finished product

Demos consume developer's resources

2/18/01 Doc 4 Design Pattern Intro slide # 10

Solution

Use demonstrable scenarios as a catalyst to open a dialogue
between you and the customer

If the specs are ambiguous develop alternative scenarios

Do not demonstrate capabilities that will be hard to
incorporated into your design

If you do not want to change the spec make sure the demo
scenarios follow the spec

Keep demo scenarios simple and short

2/18/01 Doc 4 Design Pattern Intro slide # 11

Mutable Code
Problem

How much code should you write for the demo?

Context

You have identified your Catalytic Scenarios and are
evaluating the amount of effort required to develop them

Forces

Some demo code
Can not be used in the end product
Should not be used in the end product

Development time for demo impacts product development

Customer does not like to pay for developing something twice

2/18/01 Doc 4 Design Pattern Intro slide # 12

Solution

Build modifiable code

Use tools that support a high level of abstraction
GUI builders
Scripting languages

Write as little code as possible for the demo
Use as much real code as you can

If you build screens then use Lightweight User Interfaces

Prototyping Languages (pattern 4) discusses integrating demo
code into end product

2/18/01 Doc 4 Design Pattern Intro slide # 13

Benefits of Software Patterns

By providing domain expertise patterns

Reduce time to find solutions

Avoid problems from inexpert design decisions

Patterns reduce time to design applications

Patterns are design chunks larger than objects

Patterns reduce the time needed to understand a design

2/18/01 Doc 4 Design Pattern Intro slide # 14

Common Forms For Writing Design Patterns

Alexander

Originated pattern literature

GOF (Gang of Four)

Style used in Design Patterns text

Portland Form

Form used in on-line Portland Pattern Repository

http://c2.com/cgi/wiki?PortlandPatternRepository

Coplien

2/18/01 Doc 4 Design Pattern Intro slide # 15

Design Principle 1

Program to an interface, not an implementation

Use abstract classes (and/or interfaces in Java) to define
common interfaces for a set of classes

Declare variables to be instances of the abstract class not
instances of particular classes

Benefits of programming to an interface

Client classes/objects remain unaware of the classes of
objects they use, as long as the objects adhere to the interface
the client expects

Client classes/objects remain unaware of the classes that
implement these objects. Clients only know about the abstract
classes (or interfaces) that define the interface.

2/18/01 Doc 4 Design Pattern Intro slide # 16

Programming to an Interface
Java Collections
Collection

Set List

SortedSet HashSet

TreeSet ArrayList LinkedList

Vector

Map

SortedMapHashMap

TreeMap

Hashtable

Class

Interface

Implements

Extends

WeakHashMap

Collection students = new XXX;
students.add(aStudent);

students can be any collection type

We can change our mind on what type to use

2/18/01 Doc 4 Design Pattern Intro slide # 17

Design Principle 2

Favor object composition over class inheritance

Composition
• Allows behavior changes at run time

• Helps keep classes encapsulated and focused on one task

• Reduce implementation dependencies

Inheritance

class A {
Foo x
public int complexOperation() { blah }

}

class B extends A {
public void bar() { blah}

}

Composition

class B {
A myA;
public int complexOperation() {

return myA.complexOperation()
}

public void bar() { blah}
}

2/18/01 Doc 4 Design Pattern Intro slide # 18

Parameterized Types

Generics in Ada or Eiffel
Templates in C++

Allows you to make a type as a parameter to a method or class

template <class TypeX>
TypeX min(TypeX a, Type b)

{
return a < b ? a : b;
}

Parameterized types give a third way to compose behavior in
an object-oriented system

2/18/01 Doc 4 Design Pattern Intro slide # 19

Designing for Change

Some common design problems that GoF patterns that
address

• Creating an object by specifying a class explicitly

Abstract factory, Factory Method, Prototype

• Dependence on specific operations

Chain of Responsibility, Command

• Dependence on hardware and software platforms

Abstract factory, Bridge

• Dependence on object representations or implementations

Abstract factory, Bridge, Memento, Proxy

• Algorithmic dependencies

Builder, Iterator, Strategy, Template Method, Visitor

• Tight Coupling

Abstract factory, Bridge, Chain of Responsibility, Command,
Facade, Mediator, Observer

• Extending functionality by subclassing

Bridge, Chain of Responsibility, Composite, Decorator,
Observer, Strategy

• Inability to alter classes conveniently

Adapter, Decorator, Visitor

2/18/01 Doc 4 Design Pattern Intro slide # 20

Exercises

1. Select one of your old projects to study this semester. Start
by looking for examples of coupling and cohesion in the
project. Can you find examples of each type we studied in doc
2 & 3? Later we will use the project to look for patterns and
places to apply patterns.

2. Students at SDSU get to wait a lot. In particular students get
to wait for professors during office hours. In about a year the
Computer Science department will move to a different building.
With A Place to Wait pattern in mind, what you like to see done
in the new Computer Science building to make waiting for
professors less annoying.

3. Design patterns are used to record domain expert
knowledge. Everyone is an expert at something. As students
you may be an expert at studying, running study groups,
crashing courses, finding parking spaces on campus, getting
around university rules, finding an open terminal on campus,
managing time between work-school-family, keeping INS
happy, managing teams for class projects, hiding problems in
class projects from professors, etc. Many of you also work, so
there is another source of expertise. Select one area you are
good at and write a pattern about it. One learns a lot about
patterns when you write one.

